» Articles » PMID: 16361331

Single-molecule Unfolding Force Distributions Reveal a Funnel-shaped Energy Landscape

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2005 Dec 20
PMID 16361331
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

The protein folding process is described as diffusion on a high-dimensional energy landscape. Experimental data showing details of the underlying energy surface are essential to understanding folding. So far in single-molecule mechanical unfolding experiments a simplified model assuming a force-independent transition state has been used to extract such information. Here we show that this so-called Bell model, although fitting well to force velocity data, fails to reproduce full unfolding force distributions. We show that by applying Kramers' diffusion model, we were able to reconstruct a detailed funnel-like curvature of the underlying energy landscape and establish full agreement with the data. We demonstrate that obtaining spatially resolved details of the unfolding energy landscape from mechanical single-molecule protein unfolding experiments requires models that go beyond the Bell model.

Citing Articles

Towards a Quantitative Understanding of Protein-Lipid Bilayer Interactions at the Single Molecule Level: Opportunities and Challenges.

King G, Kosztin I J Membr Biol. 2020; 254(1):17-28.

PMID: 33196888 DOI: 10.1007/s00232-020-00151-0.


Optimization of Protein-Protein Interaction Measurements for Drug Discovery Using AFM Force Spectroscopy.

Yang Y, Zeng B, Sun Z, Esfahani A, Hou J, Jiao N IEEE Trans Nanotechnol. 2020; 18:509-517.

PMID: 32051682 PMC: 7015265. DOI: 10.1109/tnano.2019.2915507.


Multiple stochastic pathways in forced peptide-lipid membrane detachment.

Utjesanovic M, Matin T, Sigdel K, King G, Kosztin I Sci Rep. 2019; 9(1):451.

PMID: 30679525 PMC: 6345752. DOI: 10.1038/s41598-018-36528-4.


Mechanical unfolding studies of protein molecules.

Taniguchi Y, Kobayashi A, Kawakami M Biophysics (Nagoya-shi). 2016; 8:51-58.

PMID: 27857607 PMC: 5070453. DOI: 10.2142/biophysics.8.51.


Kinetic Ductility and Force-Spike Resistance of Proteins from Single-Molecule Force Spectroscopy.

Cossio P, Hummer G, Szabo A Biophys J. 2016; 111(4):832-840.

PMID: 27558726 PMC: 5002075. DOI: 10.1016/j.bpj.2016.05.054.


References
1.
Silow M, Oliveberg M . High-energy channeling in protein folding. Biochemistry. 1997; 36(25):7633-7. DOI: 10.1021/bi970210x. View

2.
Schlierf M, Rief M . Temperature softening of a protein in single-molecule experiments. J Mol Biol. 2005; 354(2):497-503. DOI: 10.1016/j.jmb.2005.09.070. View

3.
Schwaiger I, Schleicher M, Noegel A, Rief M . The folding pathway of a fast-folding immunoglobulin domain revealed by single-molecule mechanical experiments. EMBO Rep. 2004; 6(1):46-51. PMC: 1299227. DOI: 10.1038/sj.embor.7400317. View

4.
Carrion-Vazquez M, Oberhauser A, Fisher T, Marszalek P, Li H, Fernandez J . Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. Prog Biophys Mol Biol. 2000; 74(1-2):63-91. DOI: 10.1016/s0079-6107(00)00017-1. View

5.
Pincet F, Husson J . The solution to the streptavidin-biotin paradox: the influence of history on the strength of single molecular bonds. Biophys J. 2005; 89(6):4374-81. PMC: 1367001. DOI: 10.1529/biophysj.105.067769. View