» Articles » PMID: 16359167

Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center

Overview
Journal Acc Chem Res
Specialty Chemistry
Date 2005 Dec 20
PMID 16359167
Citations 65
Authors
Affiliations
Soon will be listed here.
Abstract

This account explores the catalytic reduction of dinitrogen by molybdenum complexes that contain the [HIPTN(3)N](3-) ligand ([HIPTN(3)N](3-)) = [(HIPTNCH(2)CH(2))(3)N](3-), where HIPT = 3,5-(2,4,6-i-Pr(3)C(6)H(2))(2)C(6)H3) at room temperature and pressure with protons and electrons. A total of 7-8 equiv of ammonia is formed out of approximately 12 possible (depending upon the Mo derivative employed). No hydrazine is formed. Numerous X-ray studies of proposed intermediates in the catalytic cycle suggest that N(2) is being reduced at a sterically protected, single Mo center operating in oxidation states between Mo(III) and Mo(VI). Subtle variations of the [HIPTN(3)N](3-) ligand are not as successful as a consequence of an unknown shunt in the catalytic cycle that consumes reduction equivalents to yield (it is proposed) dihydrogen [corrected]

Citing Articles

Chemocatalytic Conversion of Dinitrogen to Ammonia Mediated by a Tungsten Complex.

Vogt A, Engesser T, Krahmer J, Michaelis N, Pfeil M, Junge J Angew Chem Int Ed Engl. 2024; 64(7):e202420220.

PMID: 39688523 PMC: 11811599. DOI: 10.1002/anie.202420220.


Discovery of molybdenum based nitrogen fixation catalysts with genetic algorithms.

Strandgaard M, Seumer J, Jensen J Chem Sci. 2024; 15(27):10638-10650.

PMID: 38994422 PMC: 11234868. DOI: 10.1039/d4sc02227k.


(Electro)chemical N Splitting by a Molybdenum Complex with an Anionic PNP Pincer-Type Ligand.

Ostermann N, Rotthowe N, Stuckl A, Siewert I ACS Org Inorg Au. 2024; 4(3):329-337.

PMID: 38855335 PMC: 11157508. DOI: 10.1021/acsorginorgau.3c00056.


Alkaline earth metal-assisted dinitrogen activation at nickel.

Knoell T, Polanco J, MacMillan S, Bertke J, Foroutan-Nejad C, Lancaster K Dalton Trans. 2024; 53(10):4689-4697.

PMID: 38362644 PMC: 10922974. DOI: 10.1039/d3dt03984f.


Dinitrogen Activation and Functionalization Affording Chromium Diazenido and Hydrazido Complexes.

Wang G, Yin Z, Wei J, Xi Z Acc Chem Res. 2023; .

PMID: 37937752 PMC: 10666292. DOI: 10.1021/acs.accounts.3c00476.


References
1.
Ritleng V, Yandulov D, Weare W, Schrock R, Hock A, Davis W . Molybdenum triamidoamine complexes that contain hexa-tert-butylterphenyl, hexamethylterphenyl, or p-bromohexaisopropylterphenyl substituents. An examination of some catalyst variations for the catalytic reduction of dinitrogen. J Am Chem Soc. 2004; 126(19):6150-63. DOI: 10.1021/ja0306415. View

2.
Burgess B, Lowe D . Mechanism of Molybdenum Nitrogenase. Chem Rev. 1996; 96(7):2983-3012. DOI: 10.1021/cr950055x. View

3.
Einsle O, Tezcan F, Andrade S, Schmid B, Yoshida M, Howard J . Nitrogenase MoFe-protein at 1.16 A resolution: a central ligand in the FeMo-cofactor. Science. 2002; 297(5587):1696-700. DOI: 10.1126/science.1073877. View

4.
Yandulov D, Schrock R, Rheingold A, Ceccarelli C, Davis W . Synthesis and reactions of molybdenum triamidoamine complexes containing hexaisopropylterphenyl substituents. Inorg Chem. 2003; 42(3):796-813. DOI: 10.1021/ic020505l. View

5.
Rees D, Howard J . Nitrogenase: standing at the crossroads. Curr Opin Chem Biol. 2000; 4(5):559-66. DOI: 10.1016/s1367-5931(00)00132-0. View