Impedance Characterization of Microarray Recording Electrodes in Vitro
Overview
Biophysics
Authors
Affiliations
The mechanisms underlying performance degradation of chronically implanted silicon microelectrode arrays in the central nervous system (CNS) remain unclear. Humoral and cellular components of the brain foreign body response were evaluated to determine whether their presence on the electrode surface results in increased electrical impedance. Iridium oxide microelectrode recording arrays were electrically characterized in saline, culture media with 10% fetal bovine serum, and coated with various CNS cell types isolated from rat brain. Electrochemical impedance spectroscopy and cyclic voltammetry were performed using a three-electrode system. Potential cycling caused an immediate decrease in electrical impedance, which increased with time toward precycling values, with the effect of cycling remaining significant for several days. The addition of serum caused a significant increase in impedance of up to 28% relative to the saline control. Microelectrodes coated with various cell types known to participate in the foreign body response caused a 20%-80% increase in impedance immediately after contact that remained constant or gradually increased for several weeks. Our findings suggest that the attachment of molecular and cellular species following microelectrode implantation into brain tissue likely contribute to increases in impedance, but do not appear sufficient to hinder recording performance.
Li F, Gallego J, Tirko N, Greaser J, Bashe D, Patel R Nat Commun. 2024; 15(1):5512.
PMID: 38951525 PMC: 11217463. DOI: 10.1038/s41467-024-49709-9.
Flexible high-density microelectrode arrays for closed-loop brain-machine interfaces: a review.
Liu X, Gong Y, Jiang Z, Stevens T, Li W Front Neurosci. 2024; 18:1348434.
PMID: 38686330 PMC: 11057246. DOI: 10.3389/fnins.2024.1348434.
Impact of Impedance Levels on Recording Quality in Flexible Neural Probes.
Han J, Choi J, Jeong H, Park D, Cheong E, Sung J Sensors (Basel). 2024; 24(7).
PMID: 38610511 PMC: 11014004. DOI: 10.3390/s24072300.
Planar amorphous silicon carbide microelectrode arrays for chronic recording in rat motor cortex.
Abbott J, Jeakle E, Haghighi P, Usoro J, Sturgill B, Wu Y Biomaterials. 2024; 308:122543.
PMID: 38547834 PMC: 11065583. DOI: 10.1016/j.biomaterials.2024.122543.
A portable neurostimulator circuit with anodic bias enhances stimulation injection capacity.
Ersoz A, Kim I, Han M J Neural Eng. 2022; 19(5).
PMID: 36067737 PMC: 9573774. DOI: 10.1088/1741-2552/ac8fb6.