A 191-kb Genomic Fragment Containing the Human Alpha-globin Locus Can Rescue Alpha-thalassemic Mice
Overview
Authors
Affiliations
A 191-kb human bacterial artificial chromosome (BAC) containing the human alpha-globin genomic locus was used to generate transgenic mice that express, exclusively, human alpha-globin ((hu)alpha-globin). Expression of (hu)alpha-globin reaches a level of 36% of that of endogenous mouse alpha-globin ((mu)alpha-globin) on a heterozygous mouse alpha-thalassemia background ((mu)alpha-globin knockout, (mu)alpha(+/-)). Hemizygous transgenic mice carrying the (hu)alpha-globin locus on a heterozygous knockout background ((hu)alpha(+/0), (mu)alpha(++/--)) demonstrated complementation of most hematologic parameters. By crossing (hu)alpha(+/0), (mu)alpha(++/--) mice, we were able to generate mice entirely dependent on (hu)alpha-globin synthesis. Breeding and fluorescent in situ hybridization studies demonstrate that only mice homozygous for the transgene were able to rescue embryonic lethal homozygous (mu)alpha-globin knockout embryos ((mu)alpha(--/--)). Adult rescued mice produce hemoglobin at levels similar to wild-type mice, with partial red cell complementation based on mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and red cell distribution width (RDW) measurements. Significant erythrocythemia above wild-type levels seems to be the main compensatory mechanism for the normalization of the hemoglobin levels in the rescued animals. Our studies demonstrate that the (hu)alpha-globin locus in the 191-kb transgene contains all the necessary elements for the regulated expression of (hu)alpha-globin in transgenic mice. This animal model should be valuable for studying the mechanisms regulating (hu)alpha-globin production and for development of therapeutic strategies for beta-thalassemia based on downregulation of alpha-globin expression.
Zheng M, Mitra R, Weiss E, Han Z Mol Ther. 2019; 28(2):523-535.
PMID: 31879189 PMC: 7001086. DOI: 10.1016/j.ymthe.2019.11.031.
Sokhi U, Liber M, Frye L, Park S, Kang K, Pannellini T Nat Commun. 2018; 9(1):658.
PMID: 29440643 PMC: 5811492. DOI: 10.1038/s41467-018-03081-7.
Computational tools for comparative phenomics: the role and promise of ontologies.
Gkoutos G, Schofield P, Hoehndorf R Mamm Genome. 2012; 23(9-10):669-79.
PMID: 22814867 PMC: 3488439. DOI: 10.1007/s00335-012-9404-4.
Schofield P, Sundberg J, Hoehndorf R, Gkoutos G Brief Funct Genomics. 2011; 10(5):258-65.
PMID: 21987712 PMC: 3189694. DOI: 10.1093/bfgp/elr031.
Vaingankar S, Li Y, Corti A, Biswas N, Gayen J, OConnor D Physiol Genomics. 2009; 41(1):91-101.
PMID: 20009010 PMC: 2841496. DOI: 10.1152/physiolgenomics.00086.2009.