» Articles » PMID: 16282984

RNA Polyadenylation in Archaea: Not Observed in Haloferax While the Exosome Polynucleotidylates RNA in Sulfolobus

Overview
Journal EMBO Rep
Specialty Molecular Biology
Date 2005 Nov 12
PMID 16282984
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

The addition of poly(A) tails to RNA is a phenomenon common to all organisms examined so far. No homologues of the known polyadenylating enzymes are found in Archaea and little is known concerning the mechanisms of messenger RNA degradation in these organisms. Hyperthermophiles of the genus Sulfolobus contain a protein complex with high similarity to the exosome, which is known to degrade RNA in eukaryotes. Halophilic Archaea, however, do not encode homologues of these eukaryotic exosome components. In this work, we analysed RNA polyadenylation and degradation in the archaea Sulfolobus solfataricus and Haloferax volcanii. No RNA polyadenylation was detected in the halophilic archaeon H. volcanii. However, RNA polynucleotidylation occurred in hyperthermophiles of the genus Sulfolobus and was mediated by the archaea exosome complex. Together, our results identify the first organism without RNA polyadenylation and show a polyadenylation activity of the archaea exosome.

Citing Articles

Membrane lipid and expression responses of REY15A to acid and cold stress.

Chiu B, Waldbauer J, Elling F, Mete O, Zhang L, Pearson A Front Microbiol. 2023; 14:1219779.

PMID: 37649629 PMC: 10465181. DOI: 10.3389/fmicb.2023.1219779.


RecJ3/4-aRNase J form a Ubl-associated nuclease complex functioning in survival against DNA damage in .

Jia H, Dantuluri S, Margulies S, Smith V, Lever R, Allers T mBio. 2023; 14(4):e0085223.

PMID: 37458473 PMC: 10470531. DOI: 10.1128/mbio.00852-23.


iCLIP analysis of RNA substrates of the archaeal exosome.

Bathke J, Gauernack A, Rupp O, Weber L, Preusser C, Lechner M BMC Genomics. 2020; 21(1):797.

PMID: 33198623 PMC: 7667871. DOI: 10.1186/s12864-020-07200-x.


Enzymatic Analysis of Reconstituted Archaeal Exosomes.

Evguenieva-Hackenberg E, Gauernack A, Hou L, Klug G Methods Mol Biol. 2019; 2062:63-79.

PMID: 31768972 DOI: 10.1007/978-1-4939-9822-7_4.


Indications for a moonlighting function of translation factor aIF5A in the crenarchaeum Sulfolobus solfataricus.

Bassani F, Zink I, Pribasnig T, Wolfinger M, Romagnoli A, Resch A RNA Biol. 2019; 16(5):675-685.

PMID: 30777488 PMC: 6546411. DOI: 10.1080/15476286.2019.1582953.


References
1.
Van Hoof A, Parker R . The exosome: a proteasome for RNA?. Cell. 1999; 99(4):347-50. DOI: 10.1016/s0092-8674(00)81520-2. View

2.
Raijmakers R, Schilders G, Pruijn G . The exosome, a molecular machine for controlled RNA degradation in both nucleus and cytoplasm. Eur J Cell Biol. 2004; 83(5):175-83. DOI: 10.1078/0171-9335-00385. View

3.
Koonin E, Wolf Y, Aravind L . Prediction of the archaeal exosome and its connections with the proteasome and the translation and transcription machineries by a comparative-genomic approach. Genome Res. 2001; 11(2):240-52. PMC: 311015. DOI: 10.1101/gr.162001. View

4.
Zuo Y, Deutscher M . Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res. 2001; 29(5):1017-26. PMC: 56904. DOI: 10.1093/nar/29.5.1017. View

5.
Symmons M, Williams M, Luisi B, Jones G, Carpousis A . Running rings around RNA: a superfamily of phosphate-dependent RNases. Trends Biochem Sci. 2002; 27(1):11-8. DOI: 10.1016/s0968-0004(01)01999-5. View