Bend Propagation in Flagella. II. Incorporation of Dynein Cross-bridge Kinetics into the Equations of Motion
Overview
Affiliations
The cross-bridge formalism of T. Hill has been incorporated into the nonlinear differential equations describing planar flagellar motion in an external viscous medium. A stable numerical procedure for solution of these equations is presented. A self-consistent two-state diagram with curvature-dependent rate functions is sufficient to generate stable propagating waves with frequencies and amplitudes typical of sperm flagella. For a particular choice of attachment and detachment rate functions, reasonable variation of frequency and wave speed with increasing viscosity is also obtained. The method can easily be extended to study more realistic state diagrams.
Gyebi G, Ejoh J, Ogunyemi O, Afolabi S, Ibrahim I, Anyanwu G Cell Biochem Biophys. 2024; 83(1):1-23.
PMID: 39120857 DOI: 10.1007/s12013-024-01467-7.
Gyebi G, Ogunyemi O, Ibrahim I, Ogunro O, Afolabi S, Ojo R Mol Divers. 2023; 28(3):1305-1322.
PMID: 37338673 DOI: 10.1007/s11030-023-10658-y.
Wicinski M, Wodkiewicz E, Gorski K, Walczak M, Malinowski B Pharmaceuticals (Basel). 2020; 13(11).
PMID: 33187206 PMC: 7697611. DOI: 10.3390/ph13110379.
The asymptotic coarse-graining formulation of slender-rods, bio-filaments and flagella.
Moreau C, Giraldi L, Gadelha H J R Soc Interface. 2018; 15(144).
PMID: 29973402 PMC: 6073637. DOI: 10.1098/rsif.2018.0235.
The counterbend dynamics of cross-linked filament bundles and flagella.
Coy R, Gadelha H J R Soc Interface. 2017; 14(130).
PMID: 28566516 PMC: 5454296. DOI: 10.1098/rsif.2017.0065.