» Articles » PMID: 162447

Bend Propagation in Flagella. II. Incorporation of Dynein Cross-bridge Kinetics into the Equations of Motion

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1979 Mar 1
PMID 162447
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

The cross-bridge formalism of T. Hill has been incorporated into the nonlinear differential equations describing planar flagellar motion in an external viscous medium. A stable numerical procedure for solution of these equations is presented. A self-consistent two-state diagram with curvature-dependent rate functions is sufficient to generate stable propagating waves with frequencies and amplitudes typical of sperm flagella. For a particular choice of attachment and detachment rate functions, reasonable variation of frequency and wave speed with increasing viscosity is also obtained. The method can easily be extended to study more realistic state diagrams.

Citing Articles

Cholinergic Inhibition and Antioxidant Potential of Gongronema latifolium Benth Leaf in Neurodegeneration: Experimental and In Silico Study.

Gyebi G, Ejoh J, Ogunyemi O, Afolabi S, Ibrahim I, Anyanwu G Cell Biochem Biophys. 2024; 83(1):1-23.

PMID: 39120857 DOI: 10.1007/s12013-024-01467-7.


Identification of potential inhibitors of cholinergic and β-secretase enzymes from phytochemicals derived from Gongronema latifolium Benth leaf: an integrated computational analysis.

Gyebi G, Ogunyemi O, Ibrahim I, Ogunro O, Afolabi S, Ojo R Mol Divers. 2023; 28(3):1305-1322.

PMID: 37338673 DOI: 10.1007/s11030-023-10658-y.


Perspective of SGLT2 Inhibition in Treatment of Conditions Connected to Neuronal Loss: Focus on Alzheimer's Disease and Ischemia-Related Brain Injury.

Wicinski M, Wodkiewicz E, Gorski K, Walczak M, Malinowski B Pharmaceuticals (Basel). 2020; 13(11).

PMID: 33187206 PMC: 7697611. DOI: 10.3390/ph13110379.


The asymptotic coarse-graining formulation of slender-rods, bio-filaments and flagella.

Moreau C, Giraldi L, Gadelha H J R Soc Interface. 2018; 15(144).

PMID: 29973402 PMC: 6073637. DOI: 10.1098/rsif.2018.0235.


The counterbend dynamics of cross-linked filament bundles and flagella.

Coy R, Gadelha H J R Soc Interface. 2017; 14(130).

PMID: 28566516 PMC: 5454296. DOI: 10.1098/rsif.2017.0065.


References
1.
Brokaw C . Computer simulation of movement-generating cross-bridges. Biophys J. 1976; 16(9):1013-27. PMC: 1334942. DOI: 10.1016/S0006-3495(76)85752-9. View

2.
Brokaw C . Computer simulation of flagellar movement. IV. Properties of an oscillatory two-state cross-bridge model. Biophys J. 1976; 16(9):1029-41. PMC: 1334943. DOI: 10.1016/S0006-3495(76)85753-0. View

3.
Brokaw C . Molecular mechanism for oscillation in flagella and muscle. Proc Natl Acad Sci U S A. 1975; 72(8):3102-6. PMC: 432928. DOI: 10.1073/pnas.72.8.3102. View

4.
Warner F, Mitchell D . Structural conformation of ciliary dynein arms and the generation of sliding forces in Tetrahymena cilia. J Cell Biol. 1978; 76(2):261-77. PMC: 2109981. DOI: 10.1083/jcb.76.2.261. View

5.
Hill T, Eisenberg E, Chen Y, PODOLSKY R . Some self-consistent two-state sliding filament models of muscle contraction. Biophys J. 1975; 15(4):335-72. PMC: 1334694. DOI: 10.1016/S0006-3495(75)85823-1. View