Beitner J, Helbing J, David E, Vo M
Sci Rep. 2024; 14(1):8596.
PMID: 38615047
PMC: 11379806.
DOI: 10.1038/s41598-024-58941-8.
Mortaza N, Passmore S, Glazebrook C
Brain Sci. 2023; 13(9).
PMID: 37759942
PMC: 10526316.
DOI: 10.3390/brainsci13091341.
Mortaza N, Passmore S, Glazebrook C
Brain Sci. 2023; 13(9).
PMID: 37759903
PMC: 10526856.
DOI: 10.3390/brainsci13091302.
Wijeyaratnam D, Chua R, Cressman E
Exp Brain Res. 2019; 237(6):1431-1444.
PMID: 30895342
DOI: 10.1007/s00221-019-05515-0.
Manson G, Blouin J, Kumawat A, Crainic V, Tremblay L
Exp Brain Res. 2019; 237(3):839-853.
PMID: 30610265
DOI: 10.1007/s00221-018-5448-3.
Engagement of the motor system in position monitoring: reduced distractor suppression and effects of internal representation quality on motor kinematics.
Howard C, Boulton H, Brown E, Arnold C, Belmonte M, Mitra S
Exp Brain Res. 2018; 236(5):1445-1460.
PMID: 29546652
PMC: 5937884.
DOI: 10.1007/s00221-018-5234-2.
Sensorimotor Learning during a Marksmanship Task in Immersive Virtual Reality.
Rao H, Khanna R, Zielinski D, Lu Y, Clements J, Potter N
Front Psychol. 2018; 9:58.
PMID: 29467693
PMC: 5808129.
DOI: 10.3389/fpsyg.2018.00058.
Goal-directed reaching: the allocentric coding of target location renders an offline mode of control.
Manzone J, Heath M
Exp Brain Res. 2018; 236(4):1149-1159.
PMID: 29453490
DOI: 10.1007/s00221-018-5205-7.
The Propagation of Movement Variability in Time: A Methodological Approach for Discrete Movements with Multiple Degrees of Freedom.
Kruger M, Straube A, Eggert T
Front Comput Neurosci. 2017; 11:93.
PMID: 29081743
PMC: 5645523.
DOI: 10.3389/fncom.2017.00093.
Distinct and flexible rates of online control.
de Grosbois J, Tremblay L
Psychol Res. 2017; 82(6):1054-1072.
PMID: 28733770
DOI: 10.1007/s00426-017-0888-0.
Anticipatory Postural Adjustments associated with reaching movements are programmed according to the availability of visual information.
Esposti R, Bruttini C, Bolzoni F, Cavallari P
Exp Brain Res. 2017; 235(5):1349-1360.
PMID: 28213690
DOI: 10.1007/s00221-017-4898-3.
An optimal velocity for online limb-target regulation processes?.
Tremblay L, Crainic V, de Grosbois J, Bhattacharjee A, Kennedy A, Hansen S
Exp Brain Res. 2016; 235(1):29-40.
PMID: 27618816
DOI: 10.1007/s00221-016-4770-x.
The visual properties of proximal and remote distractors differentially influence reaching planning times: evidence from pro- and antipointing tasks.
Heath M, DeSimone J
Exp Brain Res. 2016; 234(11):3259-3268.
PMID: 27405998
DOI: 10.1007/s00221-016-4723-4.
Manual aiming in healthy aging: does proprioceptive acuity make the difference?.
Helsen W, Van Halewyck F, Levin O, Boisgontier M, Lavrysen A, Elliott D
Age (Dordr). 2016; 38(2):45.
PMID: 27044301
PMC: 5005912.
DOI: 10.1007/s11357-016-9908-z.
Different damping responses explain vertical endpoint error differences between visual conditions.
Hondzinski J, Soebbing C, French A, Winges S
Exp Brain Res. 2016; 234(6):1575-87.
PMID: 26821319
DOI: 10.1007/s00221-015-4546-8.
The processing of visual and auditory information for reaching movements.
Glazebrook C, Welsh T, Tremblay L
Psychol Res. 2015; 80(5):757-73.
PMID: 26253323
DOI: 10.1007/s00426-015-0689-2.
Factors underlying age-related changes in discrete aiming.
Van Halewyck F, Lavrysen A, Levin O, Boisgontier M, Elliott D, Helsen W
Exp Brain Res. 2015; 233(6):1733-44.
PMID: 25788008
DOI: 10.1007/s00221-015-4247-3.
Perceptual averaging governs antisaccade endpoint bias.
Gillen C, Heath M
Exp Brain Res. 2014; 232(10):3201-10.
PMID: 24935477
DOI: 10.1007/s00221-014-4010-1.
Memory-guided obstacle crossing: more failures were observed for the trail limb versus lead limb.
Heijnen M, Romine N, Stumpf D, Rietdyk S
Exp Brain Res. 2014; 232(7):2131-42.
PMID: 24838551
DOI: 10.1007/s00221-014-3903-3.
A perception-based ERP reveals that the magnitude of delay matters for memory-guided reaching.
Cruikshank L, Caplan J, Singhal A
Exp Brain Res. 2014; 232(7):2087-94.
PMID: 24691754
DOI: 10.1007/s00221-014-3897-x.