» Articles » PMID: 16186495

Hierarchical Metabolomics Demonstrates Substantial Compositional Similarity Between Genetically Modified and Conventional Potato Crops

Overview
Specialty Science
Date 2005 Sep 28
PMID 16186495
Citations 77
Authors
Affiliations
Soon will be listed here.
Abstract

There is current debate whether genetically modified (GM) plants might contain unexpected, potentially undesirable changes in overall metabolite composition. However, appropriate analytical technology and acceptable metrics of compositional similarity require development. We describe a comprehensive comparison of total metabolites in field-grown GM and conventional potato tubers using a hierarchical approach initiating with rapid metabolome "fingerprinting" to guide more detailed profiling of metabolites where significant differences are suspected. Central to this strategy are data analysis procedures able to generate validated, reproducible metrics of comparison from complex metabolome data. We show that, apart from targeted changes, these GM potatoes in this study appear substantially equivalent to traditional cultivars.

Citing Articles

Chemical Diversity of UK-Grown Tea Explored Using Metabolomics and Machine Learning.

Lloyd A, Warren-Walker A, Finch J, Harper J, Bennet K, Watson A Metabolites. 2025; 15(1).

PMID: 39852394 PMC: 11767213. DOI: 10.3390/metabo15010052.


Metabolomic analysis of rice cultivars from diverse production areas.

Nie X, Yang S, Guo Y, Wang X, Wen Y, Liu C PeerJ. 2024; 12:e18496.

PMID: 39583111 PMC: 11583909. DOI: 10.7717/peerj.18496.


The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects.

Alves L, Moore J, Kell D Int J Mol Sci. 2024; 25(16).

PMID: 39201768 PMC: 11354673. DOI: 10.3390/ijms25169082.


Nutritional and anti-nutritional compositional analysis of transgenic potatoes with late blight resistance.

Moyo M, Magembe E, Mwaura L, Byarugaba A, Barekye A, Nyongesa M Front Bioeng Biotechnol. 2024; 12:1432079.

PMID: 39148943 PMC: 11324452. DOI: 10.3389/fbioe.2024.1432079.


Screening of postoperative adjuvant chemotherapy-related serum metabolic markers in breast cancer patients based on H NMR metabonomics.

Hou R, Huang W, Lin Y, Li W, Dong J, Huang X Transl Cancer Res. 2024; 13(6):2721-2734.

PMID: 38988914 PMC: 11231764. DOI: 10.21037/tcr-23-2352.


References
1.
Wu B, Abbott T, Fishman D, McMurray W, Mor G, Stone K . Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics. 2003; 19(13):1636-43. DOI: 10.1093/bioinformatics/btg210. View

2.
Allen J, Davey H, Broadhurst D, Heald J, Rowland J, Oliver S . High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat Biotechnol. 2003; 21(6):692-6. DOI: 10.1038/nbt823. View

3.
Roessner U, Wagner C, Kopka J, Trethewey R, Willmitzer L . Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J. 2000; 23(1):131-42. DOI: 10.1046/j.1365-313x.2000.00774.x. View

4.
Ward J, Harris C, Lewis J, Beale M . Assessment of 1H NMR spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of Arabidopsis thaliana. Phytochemistry. 2003; 62(6):949-57. DOI: 10.1016/s0031-9422(02)00705-7. View

5.
Sato S, Soga T, Nishioka T, Tomita M . Simultaneous determination of the main metabolites in rice leaves using capillary electrophoresis mass spectrometry and capillary electrophoresis diode array detection. Plant J. 2004; 40(1):151-63. DOI: 10.1111/j.1365-313X.2004.02187.x. View