» Articles » PMID: 16186487

A Bacterial Group II Intron-encoded Reverse Transcriptase Localizes to Cellular Poles

Overview
Specialty Science
Date 2005 Sep 28
PMID 16186487
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

The Lactococcus lactis Ll.LtrB group II intron encodes a reverse transcriptase (LtrA protein) that binds the intron RNA to promote RNA splicing and intron mobility. Here, we used LtrA-GFP fusions and immunofluorescence microscopy to show that LtrA localizes to cellular poles in Escherichia coli and Lactococcus lactis. This polar localization occurs with or without coexpression of Ll.LtrB intron RNA, is observed over a wide range of cellular growth rates and expression levels, and is independent of replication origin function. The same localization pattern was found for three nonoverlapping LtrA subsegments, possibly reflecting dependence on common redundant signals and/or protein physical properties. When coexpressed in E. coli, LtrA interferes with the polar localization of the Shigella IcsA protein, which mediates polarized actin tail assembly, suggesting competition for a common localization determinant. The polar localization of LtrA could account for the preferential insertion of the Ll.LtrB intron in the origin and terminus regions of the E. coli chromosome, may facilitate access to exposed DNA in these regions, and could potentially link group II intron mobility to the host DNA replication and/or cell division machinery.

Citing Articles

comprehensive analysis of the mobilome of a highly fragmented and repetitive genome reveals the capacity for ongoing lateral gene transfer in an obligate intracellular bacterium.

Giengkam S, Kullapanich C, Wongsantichon J, Adcox H, Gillespie J, Salje J mSphere. 2023; 8(6):e0026823.

PMID: 37850800 PMC: 10732058. DOI: 10.1128/msphere.00268-23.


analysis of the mobilome of a highly fragmented and repetitive genome reveals ongoing lateral gene transfer in an obligate intracellular bacterium.

Giengkam S, Kullapanich C, Wongsantichon J, Adcox H, Gillespie J, Salje J bioRxiv. 2023; .

PMID: 37215039 PMC: 10197636. DOI: 10.1101/2023.05.11.540415.


Identification of Group II Intron RmInt1 Binding Sites in a Bacterial Genome.

Molina-Sanchez M, Garcia-Rodriguez F, Andres-Leon E, Toro N Front Mol Biosci. 2022; 9:834020.

PMID: 35281263 PMC: 8914252. DOI: 10.3389/fmolb.2022.834020.


Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution.

Lambowitz A, Belfort M Microbiol Spectr. 2015; 3(1):MDNA3-0050-2014.

PMID: 26104554 PMC: 4394904. DOI: 10.1128/microbiolspec.MDNA3-0050-2014.


Interaction between conjugative and retrotransposable elements in horizontal gene transfer.

Novikova O, Smith D, Hahn I, Beauregard A, Belfort M PLoS Genet. 2014; 10(12):e1004853.

PMID: 25474706 PMC: 4256276. DOI: 10.1371/journal.pgen.1004853.


References
1.
Crameri A, Whitehorn E, Tate E, Stemmer W . Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol. 1996; 14(3):315-9. DOI: 10.1038/nbt0396-315. View

2.
Niki H, Hiraga S . Polar localization of the replication origin and terminus in Escherichia coli nucleoids during chromosome partitioning. Genes Dev. 1998; 12(7):1036-45. PMC: 316681. DOI: 10.1101/gad.12.7.1036. View

3.
Lambowitz A, Zimmerly S . Mobile group II introns. Annu Rev Genet. 2004; 38:1-35. DOI: 10.1146/annurev.genet.38.072902.091600. View

4.
Blocker F, Mohr G, Conlan L, Qi L, Belfort M, Lambowitz A . Domain structure and three-dimensional model of a group II intron-encoded reverse transcriptase. RNA. 2004; 11(1):14-28. PMC: 1370687. DOI: 10.1261/rna.7181105. View

5.
Coros C, Landthaler M, Piazza C, Beauregard A, Esposito D, Perutka J . Retrotransposition strategies of the Lactococcus lactis Ll.LtrB group II intron are dictated by host identity and cellular environment. Mol Microbiol. 2005; 56(2):509-24. DOI: 10.1111/j.1365-2958.2005.04554.x. View