» Articles » PMID: 16179480

Xanthorhodopsin: a Proton Pump with a Light-harvesting Carotenoid Antenna

Overview
Journal Science
Specialty Science
Date 2005 Sep 24
PMID 16179480
Citations 107
Authors
Affiliations
Soon will be listed here.
Abstract

Energy transfer from light-harvesting carotenoids to chlorophyll is common in photosynthesis, but such antenna pigments have not been observed in retinal-based ion pumps and photoreceptors. Here we describe xanthorhodopsin, a proton-pumping retinal protein/carotenoid complex in the eubacterium Salinibacter ruber. The wavelength dependence of the rate of pumping and difference absorption spectra measured under a variety of conditions indicate that this protein contains two chromophores, retinal and the carotenoid salinixanthin, in a molar ratio of about 1:1. The two chromophores interact strongly, and light energy absorbed by the carotenoid is transferred to the retinal with a quantum efficiency of approximately 40%. The antenna carotenoid extends the wavelength range of the collection of light for uphill transmembrane proton transport.

Citing Articles

Crystallographic insights into lipid-membrane protein interactions in microbial rhodopsins.

Bukhdruker S, Melnikov I, Baeken C, Balandin T, Gordeliy V Front Mol Biosci. 2024; 11:1503709.

PMID: 39606035 PMC: 11599742. DOI: 10.3389/fmolb.2024.1503709.


Molecular diversity of green-colored microbial mats from hot springs of northern Japan.

Gyaltshen Y, Ishii Y, Charvet S, Goetz E, Maruyama S, Kim E Extremophiles. 2024; 28(3):43.

PMID: 39217229 DOI: 10.1007/s00792-024-01358-y.


Ion-transporting mechanism in microbial rhodopsins: Mini-review relating to the session 5 at the 19th International Conference on Retinal Proteins.

Furutani Y, Yang C Biophys Physicobiol. 2024; 20(Supplemental):e201005.

PMID: 38362333 PMC: 10865854. DOI: 10.2142/biophysico.bppb-v20.s005.


Microalgae, Seaweeds and Aquatic Bacteria, Archaea, and Yeasts: Sources of Carotenoids with Potential Antioxidant and Anti-Inflammatory Health-Promoting Actions in the Sustainability Era.

Mapelli-Brahm P, Gomez-Villegas P, Gonda M, Leon-Vaz A, Leon R, Mildenberger J Mar Drugs. 2023; 21(6).

PMID: 37367666 PMC: 10303815. DOI: 10.3390/md21060340.


Light-driven Proton Pumps as a Potential Regulator for Carbon Fixation in Marine Diatoms.

Yoshizawa S, Azuma T, Kojima K, Inomura K, Hasegawa M, Nishimura Y Microbes Environ. 2023; 38(2).

PMID: 37344444 PMC: 10308239. DOI: 10.1264/jsme2.ME23015.


References
1.
Mukohata Y, Ihara K, Uegaki K, Miyashita Y, Sugiyama Y . Australian Halobacteria and their retinal-protein ion pumps. Photochem Photobiol. 1991; 54(6):1039-45. DOI: 10.1111/j.1751-1097.1991.tb02127.x. View

2.
Mukohata Y, Ihara K, Tamura T, Sugiyama Y . Halobacterial rhodopsins. J Biochem. 1999; 125(4):649-57. DOI: 10.1093/oxfordjournals.jbchem.a022332. View

3.
Pena A, Valens M, Santos F, Buczolits S, Anton J, Kampfer P . Intraspecific comparative analysis of the species Salinibacter ruber. Extremophiles. 2005; 9(2):151-61. DOI: 10.1007/s00792-005-0430-y. View

4.
Waschuk S, Bezerra Jr A, Shi L, Brown L . Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote. Proc Natl Acad Sci U S A. 2005; 102(19):6879-83. PMC: 1100770. DOI: 10.1073/pnas.0409659102. View

5.
Anton J, Rossello-Mora R, Rodriguez-Valera F, Amann R . Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol. 2000; 66(7):3052-7. PMC: 92110. DOI: 10.1128/AEM.66.7.3052-3057.2000. View