» Articles » PMID: 16162647

Neuromuscular Synapses Can Form in Vivo by Incorporation of Initially Aneural Postsynaptic Specializations

Overview
Journal Development
Specialty Biology
Date 2005 Sep 16
PMID 16162647
Citations 187
Authors
Affiliations
Soon will be listed here.
Abstract

Synapse formation requires the coordination of pre- and postsynaptic differentiation. An unresolved question is which steps in the process require interactions between pre- and postsynaptic cells, and which proceed cell-autonomously. One current model is that factors released from presynaptic axons organize postsynaptic differentiation directly beneath the nerve terminal. Here, we used neuromuscular junctions (NMJs) of the zebrafish primary motor system to test this model. Clusters of neurotransmitter (acetylcholine) receptors (AChRs) formed in the central region of the myotome, destined to be synapse-rich, before axons extended and even when axon extension was prevented. Time-lapse imaging revealed that pre-existing clusters on early-born slow (adaxial) muscle fibers were incorporated into NMJs as axons advanced. Axons were, however, required for the subsequent remodeling and selective stabilization of synaptic clusters that precisely appose post- to presynaptic elements. Thus, motor axons are dispensable for the initial stages of postsynaptic differentiation but are required for later stages. Moreover, many AChR clusters on later-born fast muscle fibers formed at sites that had already been contacted by axons, suggesting heterogeneity in the signaling mechanisms leading to synapse formation by a single axon.

Citing Articles

Tubulin glutamylation regulates axon guidance via the selective tuning of microtubule-severing enzymes.

Ten Martin D, Jardin N, Vougny J, Giudicelli F, Gasmi L, Berbee N EMBO J. 2024; 44(1):107-140.

PMID: 39613968 PMC: 11695996. DOI: 10.1038/s44318-024-00307-x.


The 419th Aspartic Acid of Neural Membrane Protein Enolase 2 Is a Key Residue Involved in the Axonal Growth of Motor Neurons Mediated by Interaction between Enolase 2 Receptor and Extracellular Pgk1 Ligand.

Lee B, Tsai J, Huang Y, Wang C, Lee H, Tsai H Int J Mol Sci. 2024; 25(19).

PMID: 39409082 PMC: 11477227. DOI: 10.3390/ijms251910753.


Electrical Synapses Mediate Embryonic Hyperactivity in a Zebrafish Model of Fragile X Syndrome.

Miles K, Barker C, Russell K, Appel B, Doll C J Neurosci. 2024; 44(31).

PMID: 38969506 PMC: 11293453. DOI: 10.1523/JNEUROSCI.2275-23.2024.


Aberrant evoked calcium signaling and nAChR cluster morphology in a D90A hiPSC-derived neuromuscular model.

Couturier N, Horner S, Nurnberg E, Joazeiro C, Hafner M, Rudolf R Front Cell Dev Biol. 2024; 12:1429759.

PMID: 38966427 PMC: 11222430. DOI: 10.3389/fcell.2024.1429759.


Gap-junction-mediated bioelectric signaling required for slow muscle development and function in zebrafish.

Lukowicz-Bedford R, Eisen J, Miller A Curr Biol. 2024; 34(14):3116-3132.e5.

PMID: 38936363 PMC: 11265983. DOI: 10.1016/j.cub.2024.06.007.