» Articles » PMID: 16157867

High Fidelity TNA Synthesis by Therminator Polymerase

Overview
Specialty Biochemistry
Date 2005 Sep 15
PMID 16157867
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

Therminator DNA polymerase is an efficient DNA-dependent TNA polymerase capable of polymerizing TNA oligomers of at least 80 nt in length. In order for Therminator to be useful for the in vitro selection of functional TNA sequences, its TNA synthesis fidelity must be high enough to preserve successful sequences. We used sequencing to examine the fidelity of Therminator-catalyzed TNA synthesis at different temperatures, incubation times, tNTP ratios and primer/template combinations. TNA synthesis by Therminator exhibits high fidelity under optimal conditions; the observed fidelity is sufficient to allow in vitro selection with TNA libraries of at least 200 nt in length.

Citing Articles

The clinical potential of l-oligonucleotides: challenges and opportunities.

Shearer V, Yu C, Han X, Sczepanski J Chem Sci. 2024; .

PMID: 39479156 PMC: 11514577. DOI: 10.1039/d4sc05157b.


DNA Replication across α-l-(3'-2')-Threofuranosyl Nucleotides Mediated by Human DNA Polymerase η.

Tomar R, Ghodke P, Patra A, Smyth E, Pontarelli A, Copp W Biochemistry. 2024; 63(19):2425-2439.

PMID: 39259676 PMC: 11447838. DOI: 10.1021/acs.biochem.4c00387.


Generation of densely labeled oligonucleotides for the detection of small genomic elements.

Steinek C, Guirao-Ortiz M, Stumberger G, Tolke A, Horl D, Carell T Cell Rep Methods. 2024; 4(8):100840.

PMID: 39137784 PMC: 11384094. DOI: 10.1016/j.crmeth.2024.100840.


Thermophilic Nucleic Acid Polymerases and Their Application in Xenobiology.

Wang G, Du Y, Ma X, Ye F, Qin Y, Wang Y Int J Mol Sci. 2022; 23(23).

PMID: 36499296 PMC: 9738464. DOI: 10.3390/ijms232314969.


Application of Nucleic Acid Frameworks in the Construction of Nanostructures and Cascade Biocatalysts: Recent Progress and Perspective.

Zhu G, Song P, Wu J, Luo M, Chen Z, Chen T Front Bioeng Biotechnol. 2022; 9:792489.

PMID: 35071205 PMC: 8777461. DOI: 10.3389/fbioe.2021.792489.


References
1.
Suzuki M, Yoshida S, Adman E, Blank A, Loeb L . Thermus aquaticus DNA polymerase I mutants with altered fidelity. Interacting mutations in the O-helix. J Biol Chem. 2000; 275(42):32728-35. DOI: 10.1074/jbc.M000097200. View

2.
Gevertz J, Gan H, Schlick T . In vitro RNA random pools are not structurally diverse: a computational analysis. RNA. 2005; 11(6):853-63. PMC: 1370770. DOI: 10.1261/rna.7271405. View

3.
Gardner A, Jack W . Acyclic and dideoxy terminator preferences denote divergent sugar recognition by archaeon and Taq DNA polymerases. Nucleic Acids Res. 2002; 30(2):605-13. PMC: 99817. DOI: 10.1093/nar/30.2.605. View

4.
Wu X, Delgado G, Krishnamurthy R, Eschenmoser A . 2,6-diaminopurine in TNA: effect on duplex stabilities and on the efficiency of template-controlled ligations. Org Lett. 2002; 4(8):1283-6. DOI: 10.1021/ol020016p. View

5.
Wilds C, Wawrzak Z, Krishnamurthy R, Eschenmoser A, Egli M . Crystal structure of a B-form DNA duplex containing (L)-alpha-threofuranosyl (3'-->2') nucleosides: a four-carbon sugar is easily accommodated into the backbone of DNA. J Am Chem Soc. 2002; 124(46):13716-21. DOI: 10.1021/ja0207807. View