Wetting in Hydrophobic Nanochannels: a Challenge of Classical Capillarity
Overview
Affiliations
We report an investigation of the water-hydrophobic interface in well-defined nanochannels (R approximately 2-4 nm). Wetting in these systems cannot be described by classical (macroscopic) capillary theory: (1) water occupies only a fraction ( approximately 60%) of the pore volume, and (2) the capillary pressures are approximately 60-90% greater than predicted by the Laplace equation. The results suggest the presence of approximately 0.6 nm layer of low-density fluid (vapor) separating water from the hydrophobic solid.
Mild-Temperature Supercritical Water Confined in Hydrophobic Metal-Organic Frameworks.
Merchiori S, Le Donne A, Littlefair J, Lowe A, Yu J, Wu X J Am Chem Soc. 2024; 146(19):13236-13246.
PMID: 38701635 PMC: 11099966. DOI: 10.1021/jacs.4c01226.
Bartolome L, Anagnostopoulos A, Lowe A, Sleczkowski P, Amayuelas E, Le Donne A J Phys Chem Lett. 2024; 15(4):880-887.
PMID: 38241150 PMC: 10839902. DOI: 10.1021/acs.jpclett.3c03330.
Compact Thermal Actuation by Water and Flexible Hydrophobic Nanopore.
Chorazewski M, Zajdel P, Feng T, Luo D, Lowe A, Brown C ACS Nano. 2021; 15(5):9048-9056.
PMID: 33982556 PMC: 10537034. DOI: 10.1021/acsnano.1c02175.
Mechanistic correlation between water infiltration and framework hydrophilicity in MFI zeolites.
Fasano M, Bevilacqua A, Chiavazzo E, Humplik T, Asinari P Sci Rep. 2019; 9(1):18429.
PMID: 31804543 PMC: 6895097. DOI: 10.1038/s41598-019-54751-5.
Vapor nucleation paths in lyophobic nanopores.
Tinti A, Giacomello A, Casciola C Eur Phys J E Soft Matter. 2018; 41(4):52.
PMID: 29675633 DOI: 10.1140/epje/i2018-11658-y.