» Articles » PMID: 16115313

G2D: a Tool for Mining Genes Associated with Disease

Overview
Journal BMC Genet
Publisher Biomed Central
Date 2005 Aug 24
PMID 16115313
Citations 55
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Human inherited diseases can be associated by genetic linkage with one or more genomic regions. The availability of the complete sequence of the human genome allows examining those locations for an associated gene. We previously developed an algorithm to prioritize genes on a chromosomal region according to their possible relation to an inherited disease using a combination of data mining on biomedical databases and gene sequence analysis.

Results: We have implemented this method as a web application in our site G2D (Genes to Diseases). It allows users to inspect any region of the human genome to find candidate genes related to a genetic disease of their interest. In addition, the G2D server includes pre-computed analyses of candidate genes for 552 linked monogenic diseases without an associated gene, and the analysis of 18 asthma loci.

Conclusion: G2D can be publicly accessed at http://www.ogic.ca/projects/g2d_2/.

Citing Articles

Disentangled similarity graph attention heterogeneous biological memory network for predicting disease-associated miRNAs.

Liu Y, Wu Q, Zhou L, Liu Y, Li C, Wei Z BMC Genomics. 2024; 25(1):1161.

PMID: 39623332 PMC: 11610307. DOI: 10.1186/s12864-024-11078-4.


NADPH Oxidase 3: Beyond the Inner Ear.

Herb M Antioxidants (Basel). 2024; 13(2).

PMID: 38397817 PMC: 10886416. DOI: 10.3390/antiox13020219.


Application of Bidirectional Generative Adversarial Networks to Predict Potential miRNAs Associated With Diseases.

Xu L, Li X, Yang Q, Tan L, Liu Q, Liu Y Front Genet. 2022; 13:936823.

PMID: 35903359 PMC: 9314862. DOI: 10.3389/fgene.2022.936823.


ANMDA: anti-noise based computational model for predicting potential miRNA-disease associations.

Chen X, Hua X, Jiang Z BMC Bioinformatics. 2021; 22(1):358.

PMID: 34215183 PMC: 8254275. DOI: 10.1186/s12859-021-04266-6.


Identification of infectious disease-associated host genes using machine learning techniques.

Barman R, Mukhopadhyay A, Maulik U, Das S BMC Bioinformatics. 2019; 20(1):736.

PMID: 31881961 PMC: 6935192. DOI: 10.1186/s12859-019-3317-0.


References
1.
Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W . Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25(17):3389-402. PMC: 146917. DOI: 10.1093/nar/25.17.3389. View

2.
Laitinen T, Polvi A, Rydman P, Vendelin J, Pulkkinen V, Salmikangas P . Characterization of a common susceptibility locus for asthma-related traits. Science. 2004; 304(5668):300-4. DOI: 10.1126/science.1090010. View

3.
Wjst M, Fischer G, Immervoll T, Jung M, Saar K, Rueschendorf F . A genome-wide search for linkage to asthma. German Asthma Genetics Group. Genomics. 1999; 58(1):1-8. DOI: 10.1006/geno.1999.5806. View

4.
Tanahashi H, Tabira T . Genomic organization of the human X11L2 gene (APBA3), a third member of the X11 protein family interacting with Alzheimer's beta-amyloid precursor protein. Neuroreport. 1999; 10(12):2575-8. DOI: 10.1097/00001756-199908200-00025. View

5.
Yokouchi Y, Nukaga Y, Shibasaki M, Noguchi E, Kimura K, Ito S . Significant evidence for linkage of mite-sensitive childhood asthma to chromosome 5q31-q33 near the interleukin 12 B locus by a genome-wide search in Japanese families. Genomics. 2000; 66(2):152-60. DOI: 10.1006/geno.2000.6201. View