Liu Y, Wu Q, Zhou L, Liu Y, Li C, Wei Z
BMC Genomics. 2024; 25(1):1161.
PMID: 39623332
PMC: 11610307.
DOI: 10.1186/s12864-024-11078-4.
Herb M
Antioxidants (Basel). 2024; 13(2).
PMID: 38397817
PMC: 10886416.
DOI: 10.3390/antiox13020219.
Xu L, Li X, Yang Q, Tan L, Liu Q, Liu Y
Front Genet. 2022; 13:936823.
PMID: 35903359
PMC: 9314862.
DOI: 10.3389/fgene.2022.936823.
Chen X, Hua X, Jiang Z
BMC Bioinformatics. 2021; 22(1):358.
PMID: 34215183
PMC: 8254275.
DOI: 10.1186/s12859-021-04266-6.
Barman R, Mukhopadhyay A, Maulik U, Das S
BMC Bioinformatics. 2019; 20(1):736.
PMID: 31881961
PMC: 6935192.
DOI: 10.1186/s12859-019-3317-0.
PMAMCA: prediction of microRNA-disease association utilizing a matrix completion approach.
Ha J, Park C, Park S
BMC Syst Biol. 2019; 13(1):33.
PMID: 30894171
PMC: 6425656.
DOI: 10.1186/s12918-019-0700-4.
Integrating random walk and binary regression to identify novel miRNA-disease association.
Niu Y, Wang G, Yan G, Chen X
BMC Bioinformatics. 2019; 20(1):59.
PMID: 30691413
PMC: 6350368.
DOI: 10.1186/s12859-019-2640-9.
A heterogeneous label propagation approach to explore the potential associations between miRNA and disease.
Chen X, Zhang D, You Z
J Transl Med. 2018; 16(1):348.
PMID: 30537965
PMC: 6290528.
DOI: 10.1186/s12967-018-1722-1.
Classification of Pediatric Asthma: From Phenotype Discovery to Clinical Practice.
Oksel C, Haider S, Fontanella S, Frainay C, Custovic A
Front Pediatr. 2018; 6:258.
PMID: 30298124
PMC: 6160736.
DOI: 10.3389/fped.2018.00258.
Predicting microRNA-disease associations using bipartite local models and hubness-aware regression.
Chen X, Cheng J, Yin J
RNA Biol. 2018; 15(9):1192-1205.
PMID: 30196756
PMC: 6284580.
DOI: 10.1080/15476286.2018.1517010.
EGBMMDA: Extreme Gradient Boosting Machine for MiRNA-Disease Association prediction.
Chen X, Huang L, Xie D, Zhao Q
Cell Death Dis. 2018; 9(1):3.
PMID: 29305594
PMC: 5849212.
DOI: 10.1038/s41419-017-0003-x.
LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction.
Chen X, Huang L
PLoS Comput Biol. 2017; 13(12):e1005912.
PMID: 29253885
PMC: 5749861.
DOI: 10.1371/journal.pcbi.1005912.
MKRMDA: multiple kernel learning-based Kronecker regularized least squares for MiRNA-disease association prediction.
Chen X, Niu Y, Wang G, Yan G
J Transl Med. 2017; 15(1):251.
PMID: 29233191
PMC: 5727873.
DOI: 10.1186/s12967-017-1340-3.
MOBAS: identification of disease-associated protein subnetworks using modularity-based scoring.
Ayati M, Erten S, Chance M, Koyuturk M
EURASIP J Bioinform Syst Biol. 2017; 2015:7.
PMID: 28194175
PMC: 5270451.
DOI: 10.1186/s13637-015-0025-6.
WBSMDA: Within and Between Score for MiRNA-Disease Association prediction.
Chen X, Yan C, Zhang X, You Z, Deng L, Liu Y
Sci Rep. 2016; 6:21106.
PMID: 26880032
PMC: 4754743.
DOI: 10.1038/srep21106.
Pathway and network approaches for identification of cancer signature markers from omics data.
Wang J, Zuo Y, Man Y, Avital I, Stojadinovic A, Liu M
J Cancer. 2015; 6(1):54-65.
PMID: 25553089
PMC: 4278915.
DOI: 10.7150/jca.10631.
Text mining in cancer gene and pathway prioritization.
Luo Y, Riedlinger G, Szolovits P
Cancer Inform. 2014; 13(Suppl 1):69-79.
PMID: 25392685
PMC: 4216063.
DOI: 10.4137/CIN.S13874.
Associating disease-related genetic variants in intergenic regions to the genes they impact.
Macintyre G, Jimeno Yepes A, Ong C, Verspoor K
PeerJ. 2014; 2:e639.
PMID: 25374782
PMC: 4217187.
DOI: 10.7717/peerj.639.
Text-mining solutions for biomedical research: enabling integrative biology.
Rebholz-Schuhmann D, Oellrich A, Hoehndorf R
Nat Rev Genet. 2012; 13(12):829-39.
PMID: 23150036
DOI: 10.1038/nrg3337.
Candidate gene prioritization.
Masoudi-Nejad A, Meshkin A, Haji-Eghrari B, Bidkhori G
Mol Genet Genomics. 2012; 287(9):679-98.
PMID: 22893106
DOI: 10.1007/s00438-012-0710-z.