» Articles » PMID: 16024345

Density-dependent Dispersal and Spatial Population Dynamics

Overview
Journal Proc Biol Sci
Specialty Biology
Date 2005 Jul 19
PMID 16024345
Citations 30
Authors
Affiliations
Soon will be listed here.
Abstract

The synchronization of the dynamics of spatially subdivided populations is of both fundamental and applied interest in population biology. Based on theoretical studies, dispersal movements have been inferred to be one of the most general causes of population synchrony, yet no empirical study has mapped distance-dependent estimates of movement rates on the actual pattern of synchrony in species that are known to exhibit population synchrony. Northern vole and lemming species are particularly well-known for their spatially synchronized population dynamics. Here, we use results from an experimental study to demonstrate that tundra vole dispersal movements did not act to synchronize population dynamics in fragmented habitats. In contrast to the constant dispersal rate assumed in earlier theoretical studies, the tundra vole, and many other species, exhibit negative density-dependent dispersal. Simulations of a simple mathematical model, parametrized on the basis of our experimental data, verify the empirical results, namely that the observed negative density-dependent dispersal did not have a significant synchronizing effect.

Citing Articles

Maintenance of Genetic Diversity Despite Population Fluctuations in the Lesser Prairie-Chicken ().

Lawrence A, Carleton S, Oyler-McCance S, DeYoung R, Nichols C, Wright T Ecol Evol. 2025; 15(1):e70879.

PMID: 39850748 PMC: 11757004. DOI: 10.1002/ece3.70879.


Study methodology impacts density-dependent dispersal observations: a systematic review.

Jreidini N, Green D Mov Ecol. 2024; 12(1):39.

PMID: 38773669 PMC: 11107046. DOI: 10.1186/s40462-024-00478-6.


Intraspecific demographic and trait responses to environmental change drivers are linked in two species of ciliate.

de Bruin T, De Laender F, Jadoul J, Schtickzelle N BMC Ecol Evol. 2024; 24(1):47.

PMID: 38632521 PMC: 11022343. DOI: 10.1186/s12862-024-02241-2.


Evaluating density-weighted connectivity of black bears (Ursus americanus) in Glacier National Park with spatial capture-recapture models.

Carroll S, Schmidt G, Waller J, Graves T Mov Ecol. 2024; 12(1):8.

PMID: 38263096 PMC: 11334611. DOI: 10.1186/s40462-023-00445-7.


Condition-dependent survival and movement behavior in an endangered endemic damselfly.

Mahdjoub H, Zebsa R, Kahalerras A, Amari H, Bensouilah S, Samways M Sci Rep. 2023; 13(1):21819.

PMID: 38071197 PMC: 10710475. DOI: 10.1038/s41598-023-48162-w.


References
1.
Post E, Forchhammer M . Synchronization of animal population dynamics by large-scale climate. Nature. 2002; 420(6912):168-71. DOI: 10.1038/nature01064. View

2.
Ims R, Stenseth N . Conservation biology: divided the fruitflies fall. Nature. 1989; 342(6245):21-2. DOI: 10.1038/342021a0. View

3.
Schwartz M, Mills L, McKelvey K, Ruggiero L, Allendorf F . DNA reveals high dispersal synchronizing the population dynamics of Canada lynx. Nature. 2002; 415(6871):520-2. DOI: 10.1038/415520a. View

4.
Ellner S, McCauley E, Kendall B, Briggs C, Hosseini P, WOOD S . Habitat structure and population persistence in an experimental community. Nature. 2001; 412(6846):538-43. DOI: 10.1038/35087580. View

5.
Ylikarjula J, Alaja S, Laakso J, Tesar D . Effects of patch number and dispersal patterns on population dynamics and synchrony. J Theor Biol. 2000; 207(3):377-87. DOI: 10.1006/jtbi.2000.2181. View