» Articles » PMID: 16002450

Protein Kinase C Mediates Up-regulation of Tetrodotoxin-resistant, Persistent Na+ Current in Rat and Mouse Sensory Neurones

Overview
Journal J Physiol
Specialty Physiology
Date 2005 Jul 9
PMID 16002450
Citations 59
Authors
Affiliations
Soon will be listed here.
Abstract

The tetrodotoxin-resistant (TTX-r) persistent Na(+) current, attributed to Na(V)1.9, was recorded in small (< 25 mum apparent diameter) dorsal root ganglion (DRG) neurones cultured from P21 rats and from adult wild-type and Na(V)1.8 null mice. In conventional whole-cell recordings intracellular GTP-gamma-S caused current up-regulation, an effect inhibited by the PKC pseudosubstrate inhibitor, PKC19-36. The current amplitude was also up-regulated by 25 microM intracellular 1-oleoyl-2-acetyl-sn-glycerol (OAG) consistent with PKC involvement. In perforated-patch recordings, phorbol 12-myristate 13-acetate (PMA) up-regulated the current, whereas membrane-permeant activators of protein kinase A (PKA) were without effect. PGE(2) did not acutely up-regulate the current. Conversely, both PGE(2) and PKA activation up-regulated the major TTX-r Na(+) current, Na(V)1.8. Extracellular ATP up-regulated the persistent current with an average apparent K(d) near 13 microM, possibly consistent with P2Y receptor activation. Numerical simulation of the up-regulation qualitatively reproduced changes in sensory neurone firing properties. The activation of PKC appears to be a necessary step in the GTP-dependent up-regulation of persistent Na(+) current.

Citing Articles

Understanding mechanotransduction in the distal colon and rectum via multiscale and multimodal computational modeling.

Shokrani A, Almasi A, Feng B, Pierce D J Mech Behav Biomed Mater. 2024; 160:106771.

PMID: 39476532 PMC: 11585082. DOI: 10.1016/j.jmbbm.2024.106771.


Persistent (Na v 1.9) sodium currents in human dorsal root ganglion neurons.

Zhang X, Hartung J, Gold M Pain. 2024; 166(2):448-459.

PMID: 39297710 PMC: 11723807. DOI: 10.1097/j.pain.0000000000003394.


Prostaglandin E2 depolarises sensory axons in vitro in an ANO1 and Nav1.8 dependent manner.

Kimourtzis G, Rangwani N, Jenkins B, Jani S, McNaughton P, Raouf R Sci Rep. 2024; 14(1):17360.

PMID: 39075089 PMC: 11286870. DOI: 10.1038/s41598-024-67793-1.


Computational modeling to study the impact of changes in Nav1.8 sodium channel on neuropathic pain.

Kan P, Zhu Y, Ma J, Singh G Front Comput Neurosci. 2024; 18:1327986.

PMID: 38784679 PMC: 11111952. DOI: 10.3389/fncom.2024.1327986.


A biophysically comprehensive model of urothelial afferent neurons: implications for sensory signalling in urinary bladder.

Aruljothi S, Manchanda R J Comput Neurosci. 2024; 52(1):21-37.

PMID: 38345739 DOI: 10.1007/s10827-024-00865-3.


References
1.
Khasar S, McCarter G, Levine J . Epinephrine produces a beta-adrenergic receptor-mediated mechanical hyperalgesia and in vitro sensitization of rat nociceptors. J Neurophysiol. 1999; 81(3):1104-12. DOI: 10.1152/jn.1999.81.3.1104. View

2.
Ueno S, Tsuda M, Iwanaga T, Inoue K . Cell type-specific ATP-activated responses in rat dorsal root ganglion neurons. Br J Pharmacol. 1999; 126(2):429-36. PMC: 1565824. DOI: 10.1038/sj.bjp.0702319. View

3.
Cesare P, Dekker L, Sardini A, Parker P, McNaughton P . Specific involvement of PKC-epsilon in sensitization of the neuronal response to painful heat. Neuron. 1999; 23(3):617-24. DOI: 10.1016/s0896-6273(00)80813-2. View

4.
Akopian A, Souslova V, England S, Okuse K, Ogata N, Ure J . The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci. 1999; 2(6):541-8. DOI: 10.1038/9195. View

5.
HODGKIN A, HUXLEY A . A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952; 117(4):500-44. PMC: 1392413. DOI: 10.1113/jphysiol.1952.sp004764. View