» Articles » PMID: 15994886

From Continuum Fokker-Planck Models to Discrete Kinetic Models

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2005 Jul 5
PMID 15994886
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Two theoretical formalisms are widely used in modeling mechanochemical systems such as protein motors: continuum Fokker-Planck models and discrete kinetic models. Both have advantages and disadvantages. Here we present a "finite volume" procedure to solve Fokker-Planck equations. The procedure relates the continuum equations to a discrete mechanochemical kinetic model while retaining many of the features of the continuum formulation. The resulting numerical algorithm is a generalization of the algorithm developed previously by Fricks, Wang, and Elston through relaxing the local linearization approximation of the potential functions, and a more accurate treatment of chemical transitions. The new algorithm dramatically reduces the number of numerical cells required for a prescribed accuracy. The kinetic models constructed in this fashion retain some features of the continuum potentials, so that the algorithm provides a systematic and consistent treatment of mechanical-chemical responses such as load-velocity relations, which are difficult to capture with a priori kinetic models. Several numerical examples are given to illustrate the performance of the method.

Citing Articles

Angle-dependent rotation velocity consistent with ADP release in bacterial F-ATPase.

Suiter N, Volkan-Kacso S Front Mol Biosci. 2023; 10:1184249.

PMID: 37602322 PMC: 10433373. DOI: 10.3389/fmolb.2023.1184249.


Quantitative Study of the Chiral Organization of the Phage Genome Induced by the Packaging Motor.

Cruz B, Zhu Z, Calderer C, Arsuaga J, Vazquez M Biophys J. 2020; 118(9):2103-2116.

PMID: 32353255 PMC: 7203069. DOI: 10.1016/j.bpj.2020.03.030.


Thermal fracture kinetics of heterogeneous semiflexible polymers.

Lorenzo A, De La Cruz E, Koslover E Soft Matter. 2020; 16(8):2017-2024.

PMID: 31996875 PMC: 7047574. DOI: 10.1039/c9sm01637f.


Theory of long binding events in single-molecule-controlled rotation experiments on F-ATPase.

Volkan-Kacso S, Marcus R Proc Natl Acad Sci U S A. 2017; 114(28):7272-7277.

PMID: 28652332 PMC: 5514755. DOI: 10.1073/pnas.1705960114.


Interrogating Emergent Transport Properties for Molecular Motor Ensembles: A Semi-analytical Approach.

Bhaban S, Materassi D, Li M, Hays T, Salapaka M PLoS Comput Biol. 2016; 12(11):e1005152.

PMID: 27812098 PMC: 5094777. DOI: 10.1371/journal.pcbi.1005152.


References
1.
Karplus M, McCammon J . Molecular dynamics simulations of biomolecules. Nat Struct Biol. 2002; 9(9):646-52. DOI: 10.1038/nsb0902-646. View

2.
Sun S, Wang H, Oster G . Asymmetry in the F1-ATPase and its implications for the rotational cycle. Biophys J. 2004; 86(3):1373-84. PMC: 1303975. DOI: 10.1016/S0006-3495(04)74208-3. View

3.
Aksimentiev A, Balabin I, Fillingame R, Schulten K . Insights into the molecular mechanism of rotation in the Fo sector of ATP synthase. Biophys J. 2004; 86(3):1332-44. PMC: 1303972. DOI: 10.1016/S0006-3495(04)74205-8. View

4.
Xing J, Wang H, von Ballmoos C, Dimroth P, Oster G . Torque generation by the Fo motor of the sodium ATPase. Biophys J. 2004; 87(4):2148-63. PMC: 1304641. DOI: 10.1529/biophysj.104.042093. View

5.
Fisher M, Kolomeisky A . The force exerted by a molecular motor. Proc Natl Acad Sci U S A. 1999; 96(12):6597-602. PMC: 21960. DOI: 10.1073/pnas.96.12.6597. View