» Articles » PMID: 15956211

A Cysteine-sulfinic Acid in Peroxiredoxin Regulates H2O2-sensing by the Antioxidant Pap1 Pathway

Overview
Specialty Science
Date 2005 Jun 16
PMID 15956211
Citations 103
Authors
Affiliations
Soon will be listed here.
Abstract

The Schizosaccharomyces pombe transcription factor Pap1 regulates antioxidant-gene transcription in response to H2O2. Pap1 activation occurs only at low, but not elevated, H2O2 concentrations that instead strongly trigger the mitogen-activated protein kinase Sty1 pathway. Here, we identify the peroxiredoxin Tpx1 as the upstream activator of Pap1. We show that, at low H2O2 concentrations, this oxidant scavenger can transfer a redox signal to Pap1, whereas higher concentrations of the oxidant inhibit the Tpx1-Pap1 redox relay through the temporal inactivation of Tpx1 by oxidation of its catalytic cysteine to a sulfinic acid. This cysteine modification can be reversed by the sulfiredoxin Srx1, its expression in response to high doses of H2O2 strictly depending on active Sty1. Thus, Tpx1 oxidation to the cysteine-sulfinic acid and its reversion by Srx1 constitutes a previously uncharacterized redox switch in H2O2 signaling, restricting Pap1 activation within a narrow range of H2O2 concentrations.

Citing Articles

The interactome of the Bakers' yeast peroxiredoxin Tsa1 implicates it in the redox regulation of intermediary metabolism, glycolysis and zinc homeostasis.

MacDiarmid C, Taggart J, Wang Y, Vashisht A, Qing X, Wohlschlegel J bioRxiv. 2025; .

PMID: 40027620 PMC: 11870615. DOI: 10.1101/2025.02.18.638137.


In Vivo and In Vitro Studies Assessing the Safety of Monosodium Glutamate.

Merinas-Amo T, Merinas-Amo R, Alonso-Moraga A, Font R, Del Rio Celestino M Foods. 2024; 13(23).

PMID: 39683053 PMC: 11640987. DOI: 10.3390/foods13233981.


Functionality of Reactive Oxygen Species (ROS) in Plants: Toxicity and Control in Crops Exposed to Abiotic Stress.

Panda S, Gupta D, Patel M, Vyver C, Koyama H Plants (Basel). 2024; 13(15).

PMID: 39124190 PMC: 11313751. DOI: 10.3390/plants13152071.


A systematic screen identifies Saf5 as a link between splicing and transcription in fission yeast.

Borao S, Vega M, Boronat S, Hidalgo E, Hummer S, Ayte J PLoS Genet. 2024; 20(6):e1011316.

PMID: 38833506 PMC: 11178228. DOI: 10.1371/journal.pgen.1011316.


Temporal coordination of the transcription factor response to HO stress.

Jose E, March-Steinman W, Wilson B, Shanks L, Parkinson C, Alvarado-Cruz I Nat Commun. 2024; 15(1):3440.

PMID: 38653977 PMC: 11039679. DOI: 10.1038/s41467-024-47837-w.


References
1.
Ikner A, Shiozaki K . Yeast signaling pathways in the oxidative stress response. Mutat Res. 2004; 569(1-2):13-27. DOI: 10.1016/j.mrfmmm.2004.09.006. View

2.
Chang T, Jeong W, Woo H, Lee S, Park S, Rhee S . Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J Biol Chem. 2004; 279(49):50994-1001. DOI: 10.1074/jbc.M409482200. View

3.
Shiozaki K, Russell P . Cell-cycle control linked to extracellular environment by MAP kinase pathway in fission yeast. Nature. 1995; 378(6558):739-43. DOI: 10.1038/378739a0. View

4.
Biteau B, Labarre J, Toledano M . ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature. 2003; 425(6961):980-4. DOI: 10.1038/nature02075. View

5.
Budanov A, Sablina A, Feinstein E, Koonin E, Chumakov P . Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science. 2004; 304(5670):596-600. DOI: 10.1126/science.1095569. View