Zhang J, Chen X, Cao J, Chang C, Geng A, Wang H
Foods. 2023; 12(15).
PMID: 37569170
PMC: 10418907.
DOI: 10.3390/foods12152901.
He J, Xiao P, Chen C, Zhu Z, Zhang J, Deng L
Front Genet. 2022; 13:959701.
PMID: 35991563
PMC: 9389118.
DOI: 10.3389/fgene.2022.959701.
Kadina A, Kietrys A, Kool E
Angew Chem Int Ed Engl. 2018; 57(12):3059-3063.
PMID: 29370460
PMC: 5842138.
DOI: 10.1002/anie.201708696.
Ray S, Widom J, Walter N
Chem Rev. 2018; 118(8):4120-4155.
PMID: 29363314
PMC: 5918467.
DOI: 10.1021/acs.chemrev.7b00519.
Gallego-Paez L, Bordone M, Leote A, Saraiva-Agostinho N, Ascensao-Ferreira M, Barbosa-Morais N
Hum Genet. 2017; 136(9):1015-1042.
PMID: 28374191
PMC: 5602094.
DOI: 10.1007/s00439-017-1790-y.
A mass spectrometry-based method for direct determination of pseudouridine in RNA.
Yamauchi Y, Nobe Y, Izumikawa K, Higo D, Yamagishi Y, Takahashi N
Nucleic Acids Res. 2015; 44(6):e59.
PMID: 26673725
PMC: 4824092.
DOI: 10.1093/nar/gkv1462.
GPKOW is essential for pre-mRNA splicing in vitro and suppresses splicing defect caused by dominant-negative DHX16 mutation in vivo.
Zang S, Lin T, Chen X, Gencheva M, Newo A, Yang L
Biosci Rep. 2014; 34(6):e00163.
PMID: 25296192
PMC: 4266926.
DOI: 10.1042/BSR20140142.
The rise of regulatory RNA.
Morris K, Mattick J
Nat Rev Genet. 2014; 15(6):423-37.
PMID: 24776770
PMC: 4314111.
DOI: 10.1038/nrg3722.
Structural analyses of the pre-mRNA splicing machinery.
Zhang L, Li X, Zhao R
Protein Sci. 2013; 22(6):677-92.
PMID: 23592432
PMC: 3690710.
DOI: 10.1002/pro.2266.
Quantifying functional group interactions that determine urea effects on nucleic acid helix formation.
Guinn E, Schwinefus J, Cha H, L McDevitt J, Merker W, Ritzer R
J Am Chem Soc. 2013; 135(15):5828-38.
PMID: 23510511
PMC: 3655208.
DOI: 10.1021/ja400965n.
Protein kinase a-dependent phosphorylation of serine 119 in the proto-oncogenic serine/arginine-rich splicing factor 1 modulates its activity as a splicing enhancer protein.
Aksaas A, Eikvar S, Akusjarvi G, Skalhegg B, Kvissel A
Genes Cancer. 2012; 2(8):841-51.
PMID: 22393468
PMC: 3278900.
DOI: 10.1177/1947601911430226.
Structure of the yeast U2/U6 snRNA complex.
Burke J, Sashital D, Zuo X, Wang Y, Butcher S
RNA. 2012; 18(4):673-83.
PMID: 22328579
PMC: 3312555.
DOI: 10.1261/rna.031138.111.
Cwc2 and its human homologue RBM22 promote an active conformation of the spliceosome catalytic centre.
Rasche N, Dybkov O, Schmitzova J, Akyildiz B, Fabrizio P, Luhrmann R
EMBO J. 2012; 31(6):1591-604.
PMID: 22246180
PMC: 3321175.
DOI: 10.1038/emboj.2011.502.
Matrin 3 binds and stabilizes mRNA.
Salton M, Elkon R, Borodina T, Davydov A, Yaspo M, Halperin E
PLoS One. 2011; 6(8):e23882.
PMID: 21858232
PMC: 3157474.
DOI: 10.1371/journal.pone.0023882.
Physics-based de novo prediction of RNA 3D structures.
Cao S, Chen S
J Phys Chem B. 2011; 115(14):4216-26.
PMID: 21413701
PMC: 3072456.
DOI: 10.1021/jp112059y.
Integrative genomic analyses identify BRF2 as a novel lineage-specific oncogene in lung squamous cell carcinoma.
Lockwood W, Chari R, Coe B, Thu K, Garnis C, Malloff C
PLoS Med. 2010; 7(7):e1000315.
PMID: 20668658
PMC: 2910599.
DOI: 10.1371/journal.pmed.1000315.
A structural analysis of the group II intron active site and implications for the spliceosome.
Keating K, Toor N, Perlman P, Pyle A
RNA. 2009; 16(1):1-9.
PMID: 19948765
PMC: 2802019.
DOI: 10.1261/rna.1791310.
Model systems: how chemical biologists study RNA.
Rios A, Tor Y
Curr Opin Chem Biol. 2009; 13(5-6):660-8.
PMID: 19879179
PMC: 2787688.
DOI: 10.1016/j.cbpa.2009.09.028.
The use of simple model systems to study spliceosomal catalysis.
Valadkhan S, Manley J
RNA. 2008; 15(1):4-7.
PMID: 19029305
PMC: 2612768.
DOI: 10.1261/rna.1425809.
Dissociation of the carbohydrate-binding and splicing activities of galectin-1.
Voss P, Gray R, Dickey S, Wang W, Park J, Kasai K
Arch Biochem Biophys. 2008; 478(1):18-25.
PMID: 18662664
PMC: 2590671.
DOI: 10.1016/j.abb.2008.07.003.