Adaikalam K, Vikraman D, Karuppasamy K, Kim H
Nanomaterials (Basel). 2024; 14(19).
PMID: 39404287
PMC: 11477753.
DOI: 10.3390/nano14191560.
Dehghani M, Ghazi S, Kazemzadeh Y
Sci Rep. 2024; 14(1):11594.
PMID: 38773209
PMC: 11109265.
DOI: 10.1038/s41598-024-62458-5.
Reider A, Mayerhofer J, Martini P, Scheier P, Lushchikova O
J Phys Chem A. 2024; 128(5):848-857.
PMID: 38272839
PMC: 10860146.
DOI: 10.1021/acs.jpca.3c06902.
Lemos Silva R, Barbosa M, Martins C, Scalabrini Machado D, Ribeiro L, de Oliveira H
Molecules. 2023; 28(13).
PMID: 37446684
PMC: 10343245.
DOI: 10.3390/molecules28135023.
Peng B
J Am Chem Soc. 2022; 144(43):19921-19931.
PMID: 36260929
PMC: 9634807.
DOI: 10.1021/jacs.2c08054.
Electrochemical reduction of NO catalyzed by boron-doped C fullerene: a first-principles study.
Saeidi N, Esrafili M, Jahanbin Sardroodi J
RSC Adv. 2022; 12(5):3003-3012.
PMID: 35425312
PMC: 8979198.
DOI: 10.1039/d1ra07403b.
Li-Decorated β-Borophene as Potential Candidates for Hydrogen Storage: A First-Principle Study.
Liu T, Chen Y, Wang H, Zhang M, Yuan L, Zhang C
Materials (Basel). 2017; 10(12).
PMID: 29215598
PMC: 5744334.
DOI: 10.3390/ma10121399.
Quantitative first-principles calculations of valence and core excitation spectra of solid C.
Fossard F, Hug G, Gilmore K, Kas J, Rehr J, Vila F
Phys Rev B. 2017; 95(11).
PMID: 28819652
PMC: 5557304.
DOI: 10.1103/PhysRevB.95.115112.
Theoretical insight into the BH·HCN adsorption on the Co(100) and Co(110) surfaces as hydrogen storage.
Zhao H, Ren F, Wang Y
J Mol Model. 2017; 23(4):126.
PMID: 28321654
DOI: 10.1007/s00894-017-3298-8.
A First Principles study on Boron-doped Graphene decorated by Ni-Ti-Mg atoms for Enhanced Hydrogen Storage Performance.
Nachimuthu S, Lai P, Leggesse E, Jiang J
Sci Rep. 2015; 5:16797.
PMID: 26577659
PMC: 4649468.
DOI: 10.1038/srep16797.
New Ti-decorated B40 fullerene as a promising hydrogen storage material.
Dong H, Hou T, Lee S, Li Y
Sci Rep. 2015; 5:9952.
PMID: 25943256
PMC: 4421870.
DOI: 10.1038/srep09952.
First-principles vdW-DF study on the enhanced hydrogen storage capacity of Pt-adsorbed graphene.
Khosravi A, Fereidoon A, Ahangari M, Ganji M, Emami S
J Mol Model. 2014; 20(5):2230.
PMID: 24777315
DOI: 10.1007/s00894-014-2230-8.
Three-dimensional metal-intercalated covalent organic frameworks for near-ambient energy storage.
Gao F, Ding Z, Meng S
Sci Rep. 2013; 3:1882.
PMID: 23698018
PMC: 3662009.
DOI: 10.1038/srep01882.
Structures and stabilities of ScBn (n = 1-12) clusters: an ab initio investigation.
Jia J, Ma L, Wang J, Wu H
J Mol Model. 2013; 19(8):3255-61.
PMID: 23649350
DOI: 10.1007/s00894-013-1860-6.
Evaluation of the Thermodynamic Properties of H(2) Binding in Solid State Dihydrogen Complexes [M(η(2)-H(2))(CO)dppe(2)][BArF(24)] (M = Mn, Tc, Re): an Experimental and First Principles Study.
Abrecht D, Fultz B
J Phys Chem C Nanomater Interfaces. 2012; 116(42):22245-22252.
PMID: 23243479
PMC: 3521573.
DOI: 10.1021/jp308176f.
The effect of C-vacancy on hydrogen storage and characterization of H2 modes on Ti functionalized C60 fullerene a first principles study.
Shalabi A, El Mahdy A, Taha H
J Mol Model. 2012; 19(3):1211-25.
PMID: 23160931
DOI: 10.1007/s00894-012-1615-9.
Hydrogen storage in C3Ti complex using quantum chemical methods and molecular dynamics simulations.
Kalamse V, Wadnerkar N, Chaudhari A
J Mol Model. 2011; 18(6):2423-31.
PMID: 21989957
DOI: 10.1007/s00894-011-1250-x.
Electric field enhanced hydrogen storage on polarizable materials substrates.
Zhou J, Wang Q, Sun Q, Jena P, Chen X
Proc Natl Acad Sci U S A. 2010; 107(7):2801-6.
PMID: 20133647
PMC: 2840352.
DOI: 10.1073/pnas.0905571107.