» Articles » PMID: 15879310

Cell-to-cell Connection of Endothelial Progenitor Cells with Cardiac Myocytes by Nanotubes: a Novel Mechanism for Cell Fate Changes?

Overview
Journal Circ Res
Date 2005 May 10
PMID 15879310
Citations 142
Authors
Affiliations
Soon will be listed here.
Abstract

The regeneration of new myocardium by stem or progenitor cells is an important therapeutic option. Cellular or nuclear fusion is considered as an alternative to cell reprogramming by transdifferentiation. However, the generation of hybrid cells may also be a consequence of a transient transmembrane exchange of proteins and organelles between cells. Therefore, we investigated the formation of intercellular connections, which may allow the transport of macromolecular structures between labeled adult human endothelial progenitor cells (EPC) and GFP-expressing neonatal rat cardiomyocytes (CM) in a coculture system. FACS analysis revealed that, 6 days after initiation of coculture, 2.1+/-0.4% of the cells stained positive for GFP and Dil-ac-LDL. 6 hours after initiation of the coculture, ultrafine intercellular structures between Dil-ac-LDL-labeled EPC and GFP-expressing CM were observed. The number of EPC, which established nanotubular connections with CM increased from 0.5+/-0.2% after 6 hours to 2.6+/-0.3% after 24 hours of coculture. The intercellular connections had a diameter from 50 to 800 nm, a length of 5 to 120 mum, and were only transiently established. To determine whether the nanotubular structures allowed the transport of organelles, we labeled CM with a mitochondrial live tracker (MitoTracker). Using time-lapse video microscopy, we observed the transport of stained complexes between CM and EPC resulting in up-take of MitoTracker-positive structures in EPC. Thus, the present study shows a novel type of cell-to-cell communication between progenitor cells and CM in vitro, which may contribute to the acquisition of a cardiomyogenic phenotype independent of permanent cellular or nuclear fusion.

Citing Articles

Therapeutic Potential of Adipose-Derived Regenerative Cells for Ischemic Diseases.

Che Y, Shimizu Y, Murohara T Cells. 2025; 14(5).

PMID: 40072072 PMC: 11898683. DOI: 10.3390/cells14050343.


Engineered mitochondria in diseases: mechanisms, strategies, and applications.

Li M, Wu L, Si H, Wu Y, Liu Y, Zeng Y Signal Transduct Target Ther. 2025; 10(1):71.

PMID: 40025039 PMC: 11873319. DOI: 10.1038/s41392-024-02081-y.


Mitochondrial dysfunction and Alzheimer's disease: pathogenesis of mitochondrial transfer.

Wei Y, Du X, Guo H, Han J, Liu M Front Aging Neurosci. 2025; 16:1517965.

PMID: 39741520 PMC: 11685155. DOI: 10.3389/fnagi.2024.1517965.


Hijacking intercellular trafficking for the spread of protein aggregates in neurodegenerative diseases: a focus on tunneling nanotubes (TNTs).

Chakraborty R, Belian S, Zurzolo C Extracell Vesicles Circ Nucl Acids. 2024; 4(1):27-43.

PMID: 39698299 PMC: 11648486. DOI: 10.20517/evcna.2023.05.


Tunneling Nanotubes: The Cables for Viral Spread and Beyond.

Kapoor D, Sharma P, Saini A, Azhar E, Elste J, Kohlmeir E Results Probl Cell Differ. 2024; 73:375-417.

PMID: 39242387 DOI: 10.1007/978-3-031-62036-2_16.