Zou Y, Bailey C
Biophys Rev. 2024; 16(5):591-603.
PMID: 39618802
PMC: 11604874.
DOI: 10.1007/s12551-024-01234-1.
Lim G, Calabrese D, Wolder A, Cordero P, Rother D, Mulks F
Commun Chem. 2024; 7(1):200.
PMID: 39244618
PMC: 11380674.
DOI: 10.1038/s42004-024-01288-y.
Martinez-Montero L, Tischler D, Suss P, Schallmey A, Franssen M, Hollmann F
Catal Sci Technol. 2021; 11(15):5077-5085.
PMID: 34381590
PMC: 8328376.
DOI: 10.1039/d1cy00855b.
Lin X, Zhang S, Xu D, Zhang J, Lin Y, Zhai G
Nat Commun. 2021; 12(1):3882.
PMID: 34162882
PMC: 8222219.
DOI: 10.1038/s41467-021-24203-8.
Pollok D, Waldvogel S
Chem Sci. 2021; 11(46):12386-12400.
PMID: 34123227
PMC: 8162804.
DOI: 10.1039/d0sc01848a.
A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions.
Ghosh M, Shinde V, Rueping M
Beilstein J Org Chem. 2019; 15:2710-2746.
PMID: 31807206
PMC: 6880813.
DOI: 10.3762/bjoc.15.264.
Monooxygenation of aromatic compounds by flavin-dependent monooxygenases.
Chenprakhon P, Wongnate T, Chaiyen P
Protein Sci. 2018; 28(1):8-29.
PMID: 30311986
PMC: 6295904.
DOI: 10.1002/pro.3525.
Two-Component FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities.
Heine T, van Berkel W, Gassner G, van Pee K, Tischler D
Biology (Basel). 2018; 7(3).
PMID: 30072664
PMC: 6165268.
DOI: 10.3390/biology7030042.
A Chimeric Styrene Monooxygenase with Increased Efficiency in Asymmetric Biocatalytic Epoxidation.
Corrado M, Knaus T, Mutti F
Chembiochem. 2018; 19(7):679-686.
PMID: 29378090
PMC: 5900736.
DOI: 10.1002/cbic.201700653.
The Oxygen Dilemma: A Severe Challenge for the Application of Monooxygenases?.
Holtmann D, Hollmann F
Chembiochem. 2016; 17(15):1391-8.
PMID: 27194219
PMC: 5096067.
DOI: 10.1002/cbic.201600176.
Structure and mechanism of styrene monooxygenase reductase: new insight into the FAD-transfer reaction.
Morrison E, Kantz A, Gassner G, Sazinsky M
Biochemistry. 2013; 52(35):6063-75.
PMID: 23909369
PMC: 3830598.
DOI: 10.1021/bi400763h.
Nicotinamide-independent asymmetric bioreduction of C=C-bonds via disproportionation of enones catalyzed by enoate reductases.
Stueckler C, Reiter T, Baudendistel N, Faber K
Tetrahedron. 2011; 66(3-2):663-667.
PMID: 21270958
PMC: 3007678.
DOI: 10.1016/j.tet.2009.11.065.
Nature of the reaction intermediates in the flavin adenine dinucleotide-dependent epoxidation mechanism of styrene monooxygenase.
Kantz A, Gassner G
Biochemistry. 2010; 50(4):523-32.
PMID: 21166448
PMC: 3044087.
DOI: 10.1021/bi101328r.
StyA1 and StyA2B from Rhodococcus opacus 1CP: a multifunctional styrene monooxygenase system.
Tischler D, Kermer R, Groning J, Kaschabek S, van Berkel W, Schlomann M
J Bacteriol. 2010; 192(19):5220-7.
PMID: 20675468
PMC: 2944547.
DOI: 10.1128/JB.00723-10.
Identification of a novel self-sufficient styrene monooxygenase from Rhodococcus opacus 1CP.
Tischler D, Eulberg D, Lakner S, Kaschabek S, van Berkel W, Schlomann M
J Bacteriol. 2009; 191(15):4996-5009.
PMID: 19482928
PMC: 2715729.
DOI: 10.1128/JB.00307-09.
Discovery of a novel styrene monooxygenase originating from the metagenome.
van Hellemond E, Janssen D, Fraaije M
Appl Environ Microbiol. 2007; 73(18):5832-9.
PMID: 17644649
PMC: 2074922.
DOI: 10.1128/AEM.02708-06.