In Vivo Characterization of Bone Marrow-derived Fibroblasts Recruited into Fibrotic Lesions
Overview
Reproductive Medicine
Authors
Affiliations
Fibroblasts, which are widely distributed and play a key part in tissue fibrosis, are phenotypically and functionally heterogeneous. Recent studies reported that bone marrow can be a source of tissue fibroblast. In the study reported here, we investigated in vivo characterization of bone marrow-derived fibroblasts recruited into various fibrotic lesions. Mice were engrafted with bone marrow isolated from transgenic mice expressing green fluorescent protein (GFP), and fibrotic lesions were induced by cancer implantation (skin), excisional wounding (skin), and bleomycin administration (lung). A small population of GFP+ fibroblast was found even in nonfibrotic skin (8.7% +/- 4.6%) and lung (8.9% +/- 2.5%). The proportion of GFP+ fibroblasts was significantly increased after cancer implantation(59.7% +/- 16.3%) and excisional wounding (32.2% +/- 4.8%), whereas it was not elevated after bleomycin administration (7.1% +/- 2.4%). Almost all GFP+ fibroblasts in fibrotic lesions expressed type I collagen, suggesting that bone marrow-derived fibroblasts would contribute to tissue fibrosis. GFP+ fibroblasts expressed CD45, Thy-1, and alpha-smooth muscle actin at various proportions. Our results suggested that bone marrow-derived fibroblasts expressed several fibroblastic markers in vivo and could be efficiently recruited into fibrotic lesions in response to injurious stimuli; however, the degree of recruitment frequency might depend on the tissue microenvironment.
Maeta N, Iwai R, Takemitsu H, Akashi N, Miyabe M, Funayama-Iwai M Bioengineering (Basel). 2024; 11(5).
PMID: 38790301 PMC: 11118178. DOI: 10.3390/bioengineering11050435.
Early, non-invasive detection of radiation-induced lung injury using PET/CT by targeting CXCR4.
Pei J, Cheng K, Liu T, Gao M, Wang S, Xu S Eur J Nucl Med Mol Imaging. 2023; 51(4):1109-1120.
PMID: 38030744 DOI: 10.1007/s00259-023-06517-5.
Orchestration of Mesenchymal Stem/Stromal Cells and Inflammation During Wound Healing.
Zhu M, Cao L, Melino S, Candi E, Wang Y, Shao C Stem Cells Transl Med. 2023; 12(9):576-587.
PMID: 37487541 PMC: 10502569. DOI: 10.1093/stcltm/szad043.
Extracellular matrix stiffness-The central cue for skin fibrosis.
Wang K, Wen D, Xu X, Zhao R, Jiang F, Yuan S Front Mol Biosci. 2023; 10:1132353.
PMID: 36968277 PMC: 10031116. DOI: 10.3389/fmolb.2023.1132353.
A Systematic Review of the Evidence of Hematopoietic Stem Cell Differentiation to Fibroblasts.
Smilde B, Botman E, de Vries T, de Vries R, Micha D, Schoenmaker T Biomedicines. 2022; 10(12).
PMID: 36551819 PMC: 9775738. DOI: 10.3390/biomedicines10123063.