Katzberger P, Riniker S
Chem Sci. 2024; 15(28):10794-10802.
PMID: 39027274
PMC: 11253111.
DOI: 10.1039/d4sc02432j.
Kiani Y, Jabeen I
Methods Mol Biol. 2024; 2780:203-255.
PMID: 38987471
DOI: 10.1007/978-1-0716-3985-6_12.
Tolokh I, Folescu D, Onufriev A
J Phys Chem B. 2024; 128(24):5855-5873.
PMID: 38860842
PMC: 11194828.
DOI: 10.1021/acs.jpcb.4c00254.
Zhao S, Ijaodoro I, McGowan M, Alexov E
J Comput Phys. 2023; 497.
PMID: 38045553
PMC: 10688429.
DOI: 10.1016/j.jcp.2023.112634.
Varner S, Balzer C, Wang Z
J Phys Chem B. 2023; 127(19):4328-4337.
PMID: 37159929
PMC: 10201535.
DOI: 10.1021/acs.jpcb.3c00588.
Computational modeling of protein conformational changes - Application to the opening SARS-CoV-2 spike.
Kucherova A, Strango S, Sukenik S, Theillard M
J Comput Phys. 2022; 444():110591.
PMID: 36532662
PMC: 9749448.
DOI: 10.1016/j.jcp.2021.110591.
AMOEBA Force Field Trajectories Improve Predictions of Accurate p Values of the GFP Fluorophore: The Importance of Polarizability and Water Interactions.
Lin Y, Ren P, Webb L
J Phys Chem B. 2022; 126(40):7806-7817.
PMID: 36194474
PMC: 10851343.
DOI: 10.1021/acs.jpcb.2c03642.
Characterizing Protein Protonation Microstates Using Monte Carlo Sampling.
Khaniya U, Mao J, Wei R, Gunner M
J Phys Chem B. 2022; 126(13):2476-2485.
PMID: 35344367
PMC: 8997239.
DOI: 10.1021/acs.jpcb.2c00139.
Prediction of protein p with representation learning.
Gokcan H, Isayev O
Chem Sci. 2022; 13(8):2462-2474.
PMID: 35310485
PMC: 8864681.
DOI: 10.1039/d1sc05610g.
Estimating the Roles of Protonation and Electronic Polarization in Absolute Binding Affinity Simulations.
King E, Qi R, Li H, Luo R, Aitchison E
J Chem Theory Comput. 2021; 17(4):2541-2555.
PMID: 33764050
PMC: 8254375.
DOI: 10.1021/acs.jctc.0c01305.
Short solvent model for ion correlations and hydrophobic association.
Gao A, Remsing R, Weeks J
Proc Natl Acad Sci U S A. 2020; 117(3):1293-1302.
PMID: 31911472
PMC: 6983419.
DOI: 10.1073/pnas.1918981117.
Accelerating the Generalized Born with Molecular Volume and Solvent Accessible Surface Area Implicit Solvent Model Using Graphics Processing Units.
Gong X, Chiricotto M, Liu X, Nordquist E, Feig M, Brooks 3rd C
J Comput Chem. 2019; 41(8):830-838.
PMID: 31875339
PMC: 7076882.
DOI: 10.1002/jcc.26133.
Quantitative Studies of an RNA Duplex Electrostatics by Ion Counting.
Gebala M, Herschlag D
Biophys J. 2019; 117(6):1116-1124.
PMID: 31466697
PMC: 6818163.
DOI: 10.1016/j.bpj.2019.08.007.
Predicting Monovalent Ion Correlation Effects in Nucleic Acids.
Sun L, Zhou Y, Chen S
ACS Omega. 2019; 4(8):13435-13446.
PMID: 31460472
PMC: 6705202.
DOI: 10.1021/acsomega.9b01689.
Improvements to the ABSINTH Force Field for Proteins Based on Experimentally Derived Amino Acid Specific Backbone Conformational Statistics.
Choi J, Pappu R
J Chem Theory Comput. 2019; 15(2):1367-1382.
PMID: 30633502
PMC: 10749164.
DOI: 10.1021/acs.jctc.8b00573.
Robustness and Efficiency of Poisson-Boltzmann Modeling on Graphics Processing Units.
Qi R, Luo R
J Chem Inf Model. 2018; 59(1):409-420.
PMID: 30550277
PMC: 6430105.
DOI: 10.1021/acs.jcim.8b00761.
Competitive Binding of Mg and Na Ions to Nucleic Acids: From Helices to Tertiary Structures.
Xi K, Wang F, Xiong G, Zhang Z, Tan Z
Biophys J. 2018; 114(8):1776-1790.
PMID: 29694858
PMC: 5936997.
DOI: 10.1016/j.bpj.2018.03.001.
A Finite Element Solution of Lateral Periodic Poisson-Boltzmann Model for Membrane Channel Proteins.
Ji N, Liu T, Xu J, Shen L, Lu B
Int J Mol Sci. 2018; 19(3).
PMID: 29495644
PMC: 5877556.
DOI: 10.3390/ijms19030695.
Tailoring the Variational Implicit Solvent Method for New Challenges: Biomolecular Recognition and Assembly.
Ricci C, Li B, Cheng L, Dzubiella J, McCammon J
Front Mol Biosci. 2018; 5:13.
PMID: 29484300
PMC: 5816062.
DOI: 10.3389/fmolb.2018.00013.
Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation.
Zhou H, Pang X
Chem Rev. 2018; 118(4):1691-1741.
PMID: 29319301
PMC: 5831536.
DOI: 10.1021/acs.chemrev.7b00305.