» Articles » PMID: 15831516

Functional Genomics Identifies a Mechanism for Estrogen Activation of the Retinoic Acid Receptor Alpha1 Gene in Breast Cancer Cells

Overview
Journal Mol Endocrinol
Date 2005 Apr 16
PMID 15831516
Citations 37
Authors
Affiliations
Soon will be listed here.
Abstract

The identification of estrogen receptor (ERalpha) target genes is crucial to our understanding of its predominant role in breast cancer. In this study, we used a chromatin immunoprecipitation (ChIP)-cloning strategy to identify ERalpha-regulatory modules and associated target genes in the human breast cancer cell line MCF-7. We isolated 12 transcriptionally active genomic modules that recruit ERalpha and the coactivator steroid receptor coactivator (SRC)-3 to different intensities in vivo. One of the ERalpha-regulatory modules identified is located 3.7 kb downstream of the first transcriptional start site of the RARA locus, which encodes retinoic acid receptor alpha1 (RARalpha1). This module, which includes an estrogen response element (ERE), is conserved between the human and mouse genomes. Direct binding of ERalpha to the ERE was shown using EMSAs, and transient transfections in MCF-7 cells demonstrated that endogenous ERalpha can induce estrogen-dependent transcriptional activation from the module or the ERE linked to a heterologous promoter. Furthermore, ChIP assays showed that the coregulators SRC-1, SRC-3, and receptor-interacting protein 140 are recruited to this intronic module in an estrogen-dependent manner. As expected from previous studies, the transcription factor Sp1 can be detected at the RARA alpha1 promoter by ChIP. However, treatment with estradiol did not influence Sp1 recruitment nor help recruit ERalpha to the promoter. Finally, ablation of the intronic ERE was sufficient to abrogate the up-regulation of RARA alpha1 promoter activity by estradiol. Thus, this study uncovered a mechanism by which ERalpha significantly activates RARalpha1 expression in breast cancer cells and exemplifies the utility of functional genomics strategies in identifying long-distance regulatory modules for nuclear receptors.

Citing Articles

Cellular and micro-environmental responses influencing the antitumor activity of all-trans retinoic acid in breast cancer.

Caricasulo M, Zanetti A, Terao M, Garattini E, Paroni G Cell Commun Signal. 2024; 22(1):127.

PMID: 38360674 PMC: 10870483. DOI: 10.1186/s12964-024-01492-2.


Genomic analysis of the rhesus macaque () and the cynomolgus macaque () uncover polygenic signatures of reinforcement speciation.

Bailey N, Ruiz C, Tosi A, Stevison L Ecol Evol. 2023; 13(10):e10571.

PMID: 37849934 PMC: 10577069. DOI: 10.1002/ece3.10571.


Estrogen regulates the expression of retinoic acid synthesis enzymes and binding proteins in mouse skin.

Everts H, Silva K, Schmidt A, Opalenik S, Duncan F, King Jr L Nutr Res. 2021; 94:10-24.

PMID: 34571215 PMC: 8845065. DOI: 10.1016/j.nutres.2021.08.002.


An R package for generic modular response analysis and its application to estrogen and retinoic acid receptor crosstalk.

Jimenez-Dominguez G, Ravel P, Jalaguier S, Cavailles V, Colinge J Sci Rep. 2021; 11(1):7272.

PMID: 33790340 PMC: 8012374. DOI: 10.1038/s41598-021-86544-0.


3D Mammary Epithelial Cell Models: A Goldmine of DCIS Biomarkers and Morphogenetic Mechanisms.

Rossetti S, Sacchi N Cancers (Basel). 2019; 11(2).

PMID: 30678048 PMC: 6407115. DOI: 10.3390/cancers11020130.