» Articles » PMID: 15829960

Light-induced Shape-memory Polymers

Overview
Journal Nature
Specialty Science
Date 2005 Apr 15
PMID 15829960
Citations 151
Authors
Affiliations
Soon will be listed here.
Abstract

Materials are said to show a shape-memory effect if they can be deformed and fixed into a temporary shape, and recover their original, permanent shape only on exposure to an external stimulus. Shape-memory polymers have received increasing attention because of their scientific and technological significance. In principle, a thermally induced shape-memory effect can be activated by an increase in temperature (also obtained by heating on exposure to an electrical current or light illumination). Several papers have described light-induced changes in the shape of polymers and gels, such as contraction, bending or volume changes. Here we report that polymers containing cinnamic groups can be deformed and fixed into pre-determined shapes--such as (but not exclusively) elongated films and tubes, arches or spirals--by ultraviolet light illumination. These new shapes are stable for long time periods, even when heated to 50 degrees C, and they can recover their original shape at ambient temperatures when exposed to ultraviolet light of a different wavelength. The ability of polymers to form different pre-determined temporary shapes and subsequently recover their original shape at ambient temperatures by remote light activation could lead to a variety of potential medical and other applications.

Citing Articles

Manipulating a Thermosalient Crystal Using Selective Deuteration.

Angeloski A, Galaviz P, Mole R, Piltz R, McDonagh A, Ennis C J Am Chem Soc. 2025; 147(9):8032-8047.

PMID: 39977955 PMC: 11887453. DOI: 10.1021/jacs.5c01140.


Modelling Constrained Recovery of UV-Curable Shape Memory Polymer toward 4D Printing.

Zhang H, Zhang R, Yuan C Chem Bio Eng. 2025; 1(8):715-724.

PMID: 39974323 PMC: 11835282. DOI: 10.1021/cbe.4c00020.


Shape Memory Performance and Microstructural Evolution in PLA/PEG Blends: Role of Plasticizer Content and Molecular Weight.

Sringam J, Kajornprai T, Trongsatitkul T, Suppakarn N Polymers (Basel). 2025; 17(2.

PMID: 39861296 PMC: 11768420. DOI: 10.3390/polym17020225.


Toward Customizable Smart Gels: A Comprehensive Review of Innovative Printing Techniques and Applications.

Hassan R, Abbas N, Ko J Gels. 2025; 11(1).

PMID: 39852003 PMC: 11765241. DOI: 10.3390/gels11010032.


Study on the Mechanical and Thermal Properties and Shape Memory Behaviors of Blends of Bio-Based Polybenzoxazine and Polycaprolactone with Different Molecular Weights.

Tiptipakorn S, Chaipakdee N, Rimdusit S, Hemvichian K, Lertsarawut P Polymers (Basel). 2024; 16(23).

PMID: 39684136 PMC: 11644513. DOI: 10.3390/polym16233391.