» Articles » PMID: 15829101

Stochastic Optimal Control and Estimation Methods Adapted to the Noise Characteristics of the Sensorimotor System

Overview
Journal Neural Comput
Publisher MIT Press
Date 2005 Apr 15
PMID 15829101
Citations 102
Authors
Affiliations
Soon will be listed here.
Abstract

Optimality principles of biological movement are conceptually appealing and straightforward to formulate. Testing them empirically, however, requires the solution to stochastic optimal control and estimation problems for reasonably realistic models of the motor task and the sensorimotor periphery. Recent studies have highlighted the importance of incorporating biologically plausible noise into such models. Here we extend the linear-quadratic-gaussian framework--currently the only framework where such problems can be solved efficiently--to include control-dependent, state-dependent, and internal noise. Under this extended noise model, we derive a coordinate-descent algorithm guaranteed to converge to a feedback control law and a nonadaptive linear estimator optimal with respect to each other. Numerical simulations indicate that convergence is exponential, local minima do not exist, and the restriction to nonadaptive linear estimators has negligible effects in the control problems of interest. The application of the algorithm is illustrated in the context of reaching movements. A Matlab implementation is available at www.cogsci.ucsd.edu/~todorov.

Citing Articles

Computational mechanism underlying switching of motor actions.

Zhong S, Pouratian N, Christopoulos V PLoS Comput Biol. 2025; 21(2):e1012811.

PMID: 39928670 PMC: 11875378. DOI: 10.1371/journal.pcbi.1012811.


A comparative analysis of perceptual noise in lateral and depth motion: Evidence from eye tracking.

Lopez-Moliner J J Vis. 2025; 25(1):15.

PMID: 39853995 PMC: 11761139. DOI: 10.1167/jov.25.1.15.


The spinal premotor network driving scratching flexor and extensor alternation.

Yao M, Nagamori A, Azim E, Sharpee T, Goulding M, Golomb D bioRxiv. 2025; .

PMID: 39829804 PMC: 11741273. DOI: 10.1101/2025.01.08.631866.


Bayesian active sound localisation: To what extent do humans perform like an ideal-observer?.

McLachlan G, Majdak P, Reijniers J, Mihocic M, Peremans H PLoS Comput Biol. 2025; 21(1):e1012108.

PMID: 39774775 PMC: 11741579. DOI: 10.1371/journal.pcbi.1012108.


Co-contraction embodies uncertainty: An optimal feedforward strategy for robust motor control.

Berret B, Verdel D, Burdet E, Jean F PLoS Comput Biol. 2024; 20(11):e1012598.

PMID: 39565821 PMC: 11616891. DOI: 10.1371/journal.pcbi.1012598.


References
1.
Nelson W . Physical principles for economies of skilled movements. Biol Cybern. 1983; 46(2):135-47. DOI: 10.1007/BF00339982. View

2.
Flash T, Hogan N . The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci. 1985; 5(7):1688-703. PMC: 6565116. View

3.
Meyer D, Abrams R, Kornblum S, Wright C, Smith J . Optimality in human motor performance: ideal control of rapid aimed movements. Psychol Rev. 1988; 95(3):340-70. DOI: 10.1037/0033-295x.95.3.340. View

4.
Uno Y, Kawato M, Suzuki R . Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model. Biol Cybern. 1989; 61(2):89-101. DOI: 10.1007/BF00204593. View

5.
Burbeck C, Yap Y . Two mechanisms for localization? Evidence for separation-dependent and separation-independent processing of position information. Vision Res. 1990; 30(5):739-50. DOI: 10.1016/0042-6989(90)90099-7. View