» Articles » PMID: 15829094

Independent Variable Time-step Integration of Individual Neurons for Network Simulations

Overview
Journal Neural Comput
Publisher MIT Press
Date 2005 Apr 15
PMID 15829094
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Realistic neural networks involve the coexistence of stiff, coupled, continuous differential equations arising from the integrations of individual neurons, with the discrete events with delays used for modeling synaptic connections. We present here an integration method, the local variable time-step method (lvardt), that uses separate variable-step integrators for individual neurons in the network. Cells that are undergoing excitation tend to have small time steps, and cells that are at rest with little synaptic input tend to have large time steps. A synaptic input to a cell causes reinitialization of only that cell's integrator without affecting the integration of other cells. We illustrated the use of lvardt on three models: a worst-case synchronizing mutual-inhibition model, a best-case synfire chain model, and a more realistic thalamocortical network model.

Citing Articles

Understanding Computational Costs of Cellular-Level Brain Tissue Simulations Through Analytical Performance Models.

Cremonesi F, Schurmann F Neuroinformatics. 2020; 18(3):407-428.

PMID: 32056104 PMC: 7338826. DOI: 10.1007/s12021-019-09451-w.


Challenges in Reproducibility, Replicability, and Comparability of Computational Models and Tools for Neuronal and Glial Networks, Cells, and Subcellular Structures.

Manninen T, Acimovic J, Havela R, Teppola H, Linne M Front Neuroinform. 2018; 12:20.

PMID: 29765315 PMC: 5938413. DOI: 10.3389/fninf.2018.00020.


Credibility, Replicability, and Reproducibility in Simulation for Biomedicine and Clinical Applications in Neuroscience.

Mulugeta L, Drach A, Erdemir A, Hunt C, Horner M, Ku J Front Neuroinform. 2018; 12:18.

PMID: 29713272 PMC: 5911506. DOI: 10.3389/fninf.2018.00018.


Simulation Neurotechnologies for Advancing Brain Research: Parallelizing Large Networks in NEURON.

Lytton W, Seidenstein A, Dura-Bernal S, McDougal R, Schurmann F, Hines M Neural Comput. 2016; 28(10):2063-90.

PMID: 27557104 PMC: 5295685. DOI: 10.1162/NECO_a_00876.


Non-linear leak currents affect mammalian neuron physiology.

Huang S, Hong S, De Schutter E Front Cell Neurosci. 2015; 9:432.

PMID: 26594148 PMC: 4635211. DOI: 10.3389/fncel.2015.00432.


References
1.
Victor J, Purpura K . Nature and precision of temporal coding in visual cortex: a metric-space analysis. J Neurophysiol. 1996; 76(2):1310-26. DOI: 10.1152/jn.1996.76.2.1310. View

2.
Lytton W . Optimizing synaptic conductance calculation for network simulations. Neural Comput. 1996; 8(3):501-9. DOI: 10.1162/neco.1996.8.3.501. View

3.
Wang X, Buzsaki G . Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci. 1996; 16(20):6402-13. PMC: 6578902. View

4.
Destexhe A, Mainen Z, Sejnowski T . Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci. 1994; 1(3):195-230. DOI: 10.1007/BF00961734. View

5.
Bazhenov M, Timofeev I, Steriade M, Sejnowski T . Computational models of thalamocortical augmenting responses. J Neurosci. 1998; 18(16):6444-65. PMC: 6793176. View