Tang S, Huang C, Ko T, Lin K, Chang Y, Lin P
Heliyon. 2024; 10(11):e31630.
PMID: 38867953
PMC: 11167270.
DOI: 10.1016/j.heliyon.2024.e31630.
Nag S, Banerjee C, Goyal M, Siddiqui A, Saha D, Mazumder S
iScience. 2024; 27(4):109467.
PMID: 38558939
PMC: 10981135.
DOI: 10.1016/j.isci.2024.109467.
Couto-Rodriguez R, Koh J, Chen S, Maupin-Furlow J
Antioxidants (Basel). 2023; 12(6).
PMID: 37371933
PMC: 10294847.
DOI: 10.3390/antiox12061203.
Cajili M, Prieto E
Biomolecules. 2022; 12(4).
PMID: 35454068
PMC: 9030869.
DOI: 10.3390/biom12040481.
Wai A, Cho L, Peng X, Waseem M, Lee D, Lee J
BMC Plant Biol. 2021; 21(1):530.
PMID: 34772358
PMC: 8588595.
DOI: 10.1186/s12870-021-03310-0.
Archaea: The Final Frontier of Chromatin.
Laursen S, Bowerman S, Luger K
J Mol Biol. 2020; 433(6):166791.
PMID: 33383035
PMC: 7987875.
DOI: 10.1016/j.jmb.2020.166791.
The Sac10b homolog from Sulfolobus islandicus is an RNA chaperone.
Zhang N, Guo L, Huang L
Nucleic Acids Res. 2020; 48(16):9273-9284.
PMID: 32761152
PMC: 7498313.
DOI: 10.1093/nar/gkaa656.
Archaeal Chromatin Proteins Cren7 and Sul7d Compact DNA by Bending and Bridging.
Zhang Z, Zhan Z, Wang B, Chen Y, Chen X, Wan C
mBio. 2020; 11(3).
PMID: 32518188
PMC: 7373190.
DOI: 10.1128/mBio.00804-20.
Post-translational Protein Acetylation: An Elegant Mechanism for Bacteria to Dynamically Regulate Metabolic Functions.
Christensen D, Xie X, Basisty N, Byrnes J, McSweeney S, Schilling B
Front Microbiol. 2019; 10:1604.
PMID: 31354686
PMC: 6640162.
DOI: 10.3389/fmicb.2019.01604.
Functional Insights Into Protein Acetylation in the Hyperthermophilic Archaeon .
Cao J, Wang T, Wang Q, Zheng X, Huang L
Mol Cell Proteomics. 2019; 18(8):1572-1587.
PMID: 31182439
PMC: 6683002.
DOI: 10.1074/mcp.RA119.001312.
The Role of Archaeal Chromatin in Transcription.
Sanders T, Marshall C, Santangelo T
J Mol Biol. 2019; 431(20):4103-4115.
PMID: 31082442
PMC: 6842674.
DOI: 10.1016/j.jmb.2019.05.006.
Mechanisms, Detection, and Relevance of Protein Acetylation in Prokaryotes.
Christensen D, Baumgartner J, Xie X, Jew K, Basisty N, Schilling B
mBio. 2019; 10(2).
PMID: 30967470
PMC: 6456759.
DOI: 10.1128/mBio.02708-18.
Insights into Epigenome Evolution from Animal and Plant Methylomes.
Yi S
Genome Biol Evol. 2017; 9(11):3189-3201.
PMID: 29036466
PMC: 5721340.
DOI: 10.1093/gbe/evx203.
The complex domain architecture of SAMD9 family proteins, predicted STAND-like NTPases, suggests new links to inflammation and apoptosis.
Mekhedov S, Makarova K, Koonin E
Biol Direct. 2017; 12(1):13.
PMID: 28545555
PMC: 5445408.
DOI: 10.1186/s13062-017-0185-2.
Well-positioned nucleosomes punctuate polycistronic pol II transcription units and flank silent gene arrays in .
Maree J, Povelones M, Clark D, Rudenko G, Patterton H
Epigenetics Chromatin. 2017; 10:14.
PMID: 28344657
PMC: 5359979.
DOI: 10.1186/s13072-017-0121-9.
The Mechanism Forming the Cell Surface of Tip-Growing Rooting Cells Is Conserved among Land Plants.
Honkanen S, Jones V, Morieri G, Champion C, Hetherington A, Kelly S
Curr Biol. 2016; 26(23):3238-3244.
PMID: 27866889
PMC: 5154754.
DOI: 10.1016/j.cub.2016.09.062.
Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal "Shock" Reveal Generic and Specific Metal Responses.
Wheaton G, Mukherjee A, Kelly R
Appl Environ Microbiol. 2016; 82(15):4613-4627.
PMID: 27208114
PMC: 4984275.
DOI: 10.1128/AEM.01176-16.
Transcription Regulation in Archaea.
Gehring A, Walker J, Santangelo T
J Bacteriol. 2016; 198(14):1906-1917.
PMID: 27137495
PMC: 4936096.
DOI: 10.1128/JB.00255-16.
Mechanisms of Evolutionary Innovation Point to Genetic Control Logic as the Key Difference Between Prokaryotes and Eukaryotes.
Bains W, Schulze-Makuch D
J Mol Evol. 2015; 81(1-2):34-53.
PMID: 26208881
DOI: 10.1007/s00239-015-9688-6.
Acylation of Biomolecules in Prokaryotes: a Widespread Strategy for the Control of Biological Function and Metabolic Stress.
Hentchel K, Escalante-Semerena J
Microbiol Mol Biol Rev. 2015; 79(3):321-46.
PMID: 26179745
PMC: 4503791.
DOI: 10.1128/MMBR.00020-15.