» Articles » PMID: 15803506

Exuberant Thalamocortical Axon Arborization in Cortex-specific NMDAR1 Knockout Mice

Overview
Journal J Comp Neurol
Specialty Neurology
Date 2005 Apr 2
PMID 15803506
Citations 57
Authors
Affiliations
Soon will be listed here.
Abstract

Development of whisker-specific neural patterns in the rodent somatosensory system requires NMDA receptor (NMDAR)-mediated activity. In cortex-specific NR1 knockout (CxNR1KO) mice, while thalamocortical afferents (TCAs) develop rudimentary whisker-specific patterns in the primary somatosensory (barrel) cortex, layer IV cells do not develop barrels or orient their dendrites towards TCAs. To determine the role of postsynaptic NMDARs in presynaptic afferent development and patterning in the barrel cortex, we examined the single TCA arbors in CxNR1KO mice between postnatal days (P) 1-7. Sparsely branched TCAs invade the cortical plate on P1 in CxNR1KO mice as in control mice. In control animals, TCAs progressively elaborate patchy terminals, mostly restricted to layer IV. In CxNR1KO mice, TCAs develop far more extensive arbors between P3-7. Their lateral extent is twice that of controls from P3 onwards. By P7, CxNR1KO TCAs have significantly fewer branch points and terminal endings in layers IV and VI but more in layers II/III and V than control mouse TCAs. Within expansive terminal arbors, CxNR1KO TCAs develop focal terminal densities in layer IV, corresponding to the rudimentary whisker-specific patches. Given that thalamic NMDARs are spared in CxNR1KO mice, the present results show that postsynaptic NMDARs play an important role in refinement of presynaptic afferent arbors and whisker-specific patterning in the developing barrel cortex.

Citing Articles

Restoring transient connectivity during development improves dysfunctions in fragile X mice.

Dumontier D, Liebman S, Le V, George S, Valdemar D, Van Aelst L bioRxiv. 2024; .

PMID: 39314327 PMC: 11419037. DOI: 10.1101/2024.09.08.611918.


Targeted approaches to delineate neuronal morphology during early development.

Liu B, Li Y, Ren M, Li X Front Cell Neurosci. 2023; 17:1259360.

PMID: 37854514 PMC: 10579594. DOI: 10.3389/fncel.2023.1259360.


The effects of the NMDAR co-agonist D-serine on the structure and function of optic tectal neurons in the developing visual system.

Chorghay Z, Li V, Schohl A, Ghosh A, Ruthazer E Sci Rep. 2023; 13(1):13383.

PMID: 37591903 PMC: 10435543. DOI: 10.1038/s41598-023-39951-4.


The Influence of Neural Activity and Neural Cytoarchitecture on Cerebrovascular Arborization: A Computational Model.

Kumar B, Menon S, Gayathri S, Chakravarthy V Front Neurosci. 2022; 16:917196.

PMID: 35860300 PMC: 9290769. DOI: 10.3389/fnins.2022.917196.


NMDA Receptor Enhances Correlation of Spontaneous Activity in Neonatal Barrel Cortex.

Mizuno H, Rao M, Mizuno H, Sato T, Nakazawa S, Iwasato T J Neurosci. 2020; 41(6):1207-1217.

PMID: 33372060 PMC: 7888224. DOI: 10.1523/JNEUROSCI.0527-20.2020.


References
1.
Vanderhaeghen P, Polleux F . Developmental mechanisms patterning thalamocortical projections: intrinsic, extrinsic and in between. Trends Neurosci. 2004; 27(7):384-91. DOI: 10.1016/j.tins.2004.05.009. View

2.
Lebrand C, Cases O, Wehrle R, Blakely R, EDWARDS R, Gaspar P . Transient developmental expression of monoamine transporters in the rodent forebrain. J Comp Neurol. 1998; 401(4):506-24. View

3.
Scheiffele P . Cell-cell signaling during synapse formation in the CNS. Annu Rev Neurosci. 2003; 26:485-508. DOI: 10.1146/annurev.neuro.26.043002.094940. View

4.
Rebsam A, Seif I, Gaspar P . Refinement of thalamocortical arbors and emergence of barrel domains in the primary somatosensory cortex: a study of normal and monoamine oxidase a knock-out mice. J Neurosci. 2002; 22(19):8541-52. PMC: 6757778. View

5.
Erzurumlu R, Jhaveri S . Trigeminal ganglion cell processes are spatially ordered prior to the differentiation of the vibrissa pad. J Neurosci. 1992; 12(10):3946-55. PMC: 6575964. View