» Articles » PMID: 15800303

Options for Handling Missing Data in the Health Utilities Index Mark 3

Overview
Publisher Sage Publications
Date 2005 Apr 1
PMID 15800303
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Background: The Health Utilities Index Mark 3 (HUI3) is a tool composed of 41 questions, covering 8 attributes: vision, hearing, speech, ambulation, dexterity, emotion, cognition, and pain. Responses to these questions can define more than 972,000 health situations. This tool allows respondents to answer "Don't Know," for which there is no scoring instruction, to any given question. This situation creates a break in the scoring algorithm and leads to considerable amounts of missing data. The goal of this study is to develop strategies to deal with HUI3 scores for participants who have missing data.

Methods: The authors used data from 248 individuals enrolled in the Cataract Management Trial, focusing on the HUI3 vision and ambulation attributes, which had 19% and 10% of attribute levels missing, respectively. Inspection and deduction were used to fill in values independent of the value of the missing data, then alternative analytic techniques were compared, including mean substitution, model scoring, hot deck, multiple imputation, and regression imputation.

Results: Inspection and logical deduction reduced the percentage of missing information in the HUI3 by 49% to 87%. A comparison of analytic techniques used for the remaining HUI3 vision data missing demonstrated the value of building models based on internal response patterns and that simple analytic techniques fare as well as more complicated ones when the number of missing cases is small.

Conclusion: Analyzing the pattern of responses in cases where the attribute level score is missing reduces the amount of missing data and can simplify the analytic process for the remaining missing data.

Citing Articles

Natural History of Vanishing White Matter.

Hamilton E, van der Lei H, Vermeulen G, Gerver J, Lourenco C, Naidu S Ann Neurol. 2018; 84(2):274-288.

PMID: 30014503 PMC: 6175238. DOI: 10.1002/ana.25287.


Is there an association between early weight status and utility-based health-related quality of life in young children?.

Tan E, Brown V, Petrou S, DSouza M, Moodie M, Wen L Qual Life Res. 2018; 27(11):2851-2858.

PMID: 29992501 DOI: 10.1007/s11136-018-1932-2.


The economic consequences of attention-deficit hyperactivity disorder in the Scottish prison system.

Young S, Gonzalez R, Fridman M, Hodgkins P, Kim K, Gudjonsson G BMC Psychiatry. 2018; 18(1):210.

PMID: 29940897 PMC: 6019793. DOI: 10.1186/s12888-018-1792-x.


Health-related quality of life as a predictor of mortality among survivors of AKI.

Joyce V, Smith M, Johansen K, Unruh M, Siroka A, OConnor T Clin J Am Soc Nephrol. 2012; 7(7):1063-70.

PMID: 22595826 PMC: 3386668. DOI: 10.2215/CJN.00450112.


Predictors of health utility among 60-day survivors of acute kidney injury in the Veterans Affairs/National Institutes of Health Acute Renal Failure Trial Network Study.

Johansen K, Smith M, Unruh M, Siroka A, OConnor T, Palevsky P Clin J Am Soc Nephrol. 2010; 5(8):1366-72.

PMID: 20507953 PMC: 2924409. DOI: 10.2215/CJN.02570310.