Tryptophan Side Chain Electrostatic Interactions Determine Edge-to-face Vs Parallel-displaced Tryptophan Side Chain Geometries in the Designed Beta-hairpin "trpzip2"
Overview
Authors
Affiliations
The interaction geometries of the four tryptophan (Trp) side chains in the 12-residue designed beta-hairpin trpzip2 are investigated using all-atom explicit-solvent molecular dynamics simulations. The experimentally observed edge-to-face (EtF) pairwise interaction geometries are stable on a time scale of 10 ns. However, removing the electrostatic multipoles of the Trp side chains while retaining the dipoles of the side chains' NH moieties induces a conformational change to a geometry in which three of the four side chains interact in a parallel-displaced (PD) manner. Free energy simulations of the Etf to PD conformational change reveal that, with the side chain multipole moments intact (+MP), the EtF conformation is preferred by 5.79 kcal/mol. Conversely, with only the dipole moments of the side chain NH moieties intact (-MP), the PD conformation's free energy is more favorable by 1.71 kcal/mol. In contrast to energetic similarities for Trp side chain-water electrostatic and Trp side chain-Trp side chain and Trp side chain-water van der Waals, +MP Trp side chain-Trp side chain electrostatic interactions are more favorable by 4.21 kcal/mol in the EtF conformation, while in the -MP case the EtF and PD conformations' Trp side chain-Trp side chain electrostatic energies are nearly identical. The results highlight the importance of electrostatic multipole moments in determining aromatic-aromatic interaction geometries in aqueous biomolecular systems and argue for the inclusion of this physics in simplified models used for protein-ligand docking and protein structure prediction, possibly through a truncated Coulomb term between aromatic moieties.
Saecker R, Mueller A, Malone B, Chen J, Budell W, Dandey V Nat Struct Mol Biol. 2024; 31(11):1778-1788.
PMID: 38951624 PMC: 11821292. DOI: 10.1038/s41594-024-01349-9.
Saecker R, Mueller A, Malone B, Chen J, Budell W, Dandey V bioRxiv. 2024; .
PMID: 38559232 PMC: 10979975. DOI: 10.1101/2024.03.13.584744.
Richaud A, Mandal S, Das A, Roche S ACS Chem Biol. 2023; 18(12):2555-2563.
PMID: 37976523 PMC: 11736618. DOI: 10.1021/acschembio.3c00553.
Van Lommel R, Bettens T, Barlow T, Bertouille J, Ballet S, De Proft F Pharmaceuticals (Basel). 2022; 15(8).
PMID: 36015083 PMC: 9414876. DOI: 10.3390/ph15080935.
Hetenyi A, Szabo E, Imre N, Bhaumik K, Tokoli A, Fuzesi T Pharmaceutics. 2022; 14(3).
PMID: 35335956 PMC: 8953856. DOI: 10.3390/pharmaceutics14030580.