» Articles » PMID: 15795303

In Vivo Evidence for Instability of Episomal Human Immunodeficiency Virus Type 1 CDNA

Overview
Journal J Virol
Date 2005 Mar 30
PMID 15795303
Citations 68
Authors
Affiliations
Soon will be listed here.
Abstract

Current regimens for the management of human immunodeficiency virus type 1 (HIV-1) infection suppress plasma viremia to below detectable levels for prolonged intervals. Nevertheless, there is a rapid resumption in plasma viremia if therapy is interrupted. Attempts to characterize the extent of viral replication under conditions of potent suppression and undetectable plasma viremia have been hampered by a lack of convenient assays that can distinguish latent from ongoing viral replication. Using episomal viral cDNA as a surrogate for ongoing replication, we previously presented evidence that viral replication persists in the majority of infected individuals with a sustained aviremic status. The labile nature of viral episomes and hence their validity as surrogate markers of ongoing replication in individuals with long-term-suppressed HIV-1 infection have been analyzed in short-term in vitro experiments with conflicting results. Since these in vitro experiments do not shed light on the long-term in vivo dynamics of episomal cDNA or recapitulate the natural targets of infection in vivo, we have analyzed the dynamics of episomal cDNA turnover in vivo by following the emergence of an M184V polymorphism in plasma viral RNA, in episomal cDNA, and in proviral DNA in patients on suboptimal therapies. We demonstrate that during acquisition of drug resistance, wild-type episomal cDNAs are replaced by M184V-harboring episomes. Importantly, a complete replacement of wild-type episomes with M184V-containing episomes occurred while proviruses remained wild type. This indicates that episomal cDNAs are turned over by degradation rather than through death or tissue redistribution of the infected cell itself. Therefore, evolution of episomal viral cDNAs is a valid surrogate of ongoing viral replication in HIV-1-infected individuals.

Citing Articles

Biphasic decay of intact SHIV genomes following initiation of antiretroviral therapy complicates analysis of interventions targeting the reservoir.

Kumar M, Fray E, Bender A, Zitzmann C, Ribeiro R, Perelson A Proc Natl Acad Sci U S A. 2023; 120(43):e2313209120.

PMID: 37844236 PMC: 10614214. DOI: 10.1073/pnas.2313209120.


Assessing the Virologic Impact of Archived Resistance in the Dolutegravir/Lamivudine 2-Drug Regimen HIV-1 Switch Study TANGO through Week 144.

Wang R, Wright J, Saggu P, Ait-Khaled M, Moodley R, Parry C Viruses. 2023; 15(6).

PMID: 37376649 PMC: 10300912. DOI: 10.3390/v15061350.


Antiretroviral therapy reveals triphasic decay of intact SIV genomes and persistence of ancestral variants.

Fray E, Wu F, Simonetti F, Zitzmann C, Sambaturu N, Molina-Paris C Cell Host Microbe. 2023; 31(3):356-372.e5.

PMID: 36809762 PMC: 10583177. DOI: 10.1016/j.chom.2023.01.016.


Different Pathways Conferring Integrase Strand-Transfer Inhibitors Resistance.

Richetta C, Tu N, Delelis O Viruses. 2022; 14(12).

PMID: 36560595 PMC: 9785060. DOI: 10.3390/v14122591.


Demystifying extrachromosomal DNA circles: Categories, biogenesis, and cancer therapeutics.

Wu M, Rai K Comput Struct Biotechnol J. 2022; 20:6011-6022.

PMID: 36382182 PMC: 9647416. DOI: 10.1016/j.csbj.2022.10.033.


References
1.
Hermankova M, Siliciano J, Zhou Y, Monie D, Chadwick K, Margolick J . Analysis of human immunodeficiency virus type 1 gene expression in latently infected resting CD4+ T lymphocytes in vivo. J Virol. 2003; 77(13):7383-92. PMC: 164778. DOI: 10.1128/jvi.77.13.7383-7392.2003. View

2.
Zhang L, Ramratnam B, Tenner-Racz K, He Y, Vesanen M, Lewin S . Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. N Engl J Med. 1999; 340(21):1605-13. DOI: 10.1056/NEJM199905273402101. View

3.
Bi X, Gatanaga H, Ida S, Tsuchiya K, Matsuoka-Aizawa S, Kimura S . Emergence of protease inhibitor resistance-associated mutations in plasma HIV-1 precedes that in proviruses of peripheral blood mononuclear cells by more than a year. J Acquir Immune Defic Syndr. 2003; 34(1):1-6. DOI: 10.1097/00126334-200309010-00001. View

4.
Havlir D, Strain M, Clerici M, Ignacio C, Trabattoni D, Ferrante P . Productive infection maintains a dynamic steady state of residual viremia in human immunodeficiency virus type 1-infected persons treated with suppressive antiretroviral therapy for five years. J Virol. 2003; 77(20):11212-9. PMC: 224988. DOI: 10.1128/jvi.77.20.11212-11219.2003. View

5.
Kulkosky J, Sullivan J, Xu Y, Malin-Markham A, Otero M, Calarota S . Genotypic alteration of HAART-persistent HIV-1 reservoirs in vivo. Virology. 2003; 314(2):617-29. DOI: 10.1016/s0042-6822(03)00464-1. View