» Articles » PMID: 15793004

Detection of Chiral Sum Frequency Generation Vibrational Spectra of Proteins and Peptides at Interfaces in Situ

Overview
Specialty Science
Date 2005 Mar 29
PMID 15793004
Citations 41
Authors
Affiliations
Soon will be listed here.
Abstract

In this work, we demonstrate the feasibility to collect off-electronic resonance chiral sum frequency generation (SFG) vibrational spectra from interfacial proteins and peptides at the solid/liquid interface in situ. It is difficult to directly detect a chiral SFG vibrational spectrum from interfacial fibrinogen molecules. By adopting an interference enhancement method, such a chiral SFG vibrational spectrum can be deduced from interference spectra between the normal achiral spectrum and the chiral spectrum. We found that the chiral SFG vibrational spectrum of interfacial fibrinogen was mainly contributed by the beta-sheet structure. For a beta-sheet peptide tachyplesin I, which may be quite ordered at the solid/liquid interface, chiral SFG vibrational spectra can be collected directly. We believe that these chiral signals are mainly contributed by electric dipole contributions, which can dominate the chiroptical responses of uniaxial systems. For the first time, to our knowledge, this work indicates that the off-electronic resonance SFG technique is sensitive enough to collect chiral SFG vibrational spectra of interfacial proteins and peptides, providing more structural information to elucidate interfacial protein and peptide structures.

Citing Articles

Beyond the "spine of hydration": Chiral SFG spectroscopy detects DNA first hydration shell and base pair structures.

Perets E, Konstantinovsky D, Santiago T, Videla P, Tremblay M, Velarde L J Chem Phys. 2024; 161(9).

PMID: 39230381 PMC: 11377083. DOI: 10.1063/5.0220479.


Theoretical basis for interpreting heterodyne chirality-selective sum frequency generation spectra of water.

Konstantinovsky D, Santiago T, Tremblay M, Simpson G, Hammes-Schiffer S, Yan E J Chem Phys. 2024; 160(5).

PMID: 38341693 PMC: 10846909. DOI: 10.1063/5.0181718.


Fully First-Principles Surface Spectroscopy with Machine Learning.

Litman Y, Lan J, Nagata Y, Wilkins D J Phys Chem Lett. 2023; 14(36):8175-8182.

PMID: 37671886 PMC: 10510433. DOI: 10.1021/acs.jpclett.3c01989.


Hydration behaviors of nonfouling zwitterionic materials.

Sarker P, Lu T, Liu D, Wu G, Chen H, Sajib M Chem Sci. 2023; 14(27):7500-7511.

PMID: 37449074 PMC: 10337769. DOI: 10.1039/d3sc01977b.


Detecting Interplay of Chirality, Water, and Interfaces for Elucidating Biological Functions.

Yan E, Perets E, Konstantinovsky D, Hammes-Schiffer S Acc Chem Res. 2023; 56(12):1494-1504.

PMID: 37163574 PMC: 10344471. DOI: 10.1021/acs.accounts.3c00088.


References
1.
Chen X, Wang J, Sniadecki J, Even M, Chen Z . Probing alpha-helical and beta-sheet structures of peptides at solid/liquid interfaces with SFG. Langmuir. 2005; 21(7):2662-4. DOI: 10.1021/la050048w. View

2.
Ye S, Noda H, Nishida T, Morita S, Osawa M . Cd2+-induced interfacial structural changes of Langmuir-Blodgett films of stearic acid on solid substrates: a sum frequency generation study. Langmuir. 2005; 20(2):357-65. DOI: 10.1021/la036008e. View

3.
Barth A, Zscherp C . What vibrations tell us about proteins. Q Rev Biophys. 2003; 35(4):369-430. DOI: 10.1017/s0033583502003815. View

4.
Ji N, Shen Y . Optically active sum frequency generation from molecules with a chiral center: amino acids as model systems. J Am Chem Soc. 2004; 126(46):15008-9. DOI: 10.1021/ja045708i. View

5.
Maki , Kauranen , Persoons . Surface second-harmonic generation from chiral materials. Phys Rev B Condens Matter. 1995; 51(3):1425-1434. DOI: 10.1103/physrevb.51.1425. View