On the Mechanism of Hydrophobic Association of Nanoscopic Solutes
Overview
Affiliations
The hydration behavior of two planar nanoscopic hydrophobic solutes in liquid water at normal temperature and pressure is investigated by calculating the potential of mean force between them at constant pressure as a function of the solute-solvent interaction potential. The importance of the effect of weak attractive interactions between the solute atoms and the solvent on the hydration behavior is clearly demonstrated. We focus on the underlying mechanism behind the contrasting results obtained in various recent experimental and computational studies on water near hydrophobic solutes. The length scale where crossover from a solvent separated state to the contact pair state occurs is shown to depend on the solute sizes as well as on details of the solute-solvent interaction. We find the mechanism for attractive mean forces between the plates is very different depending on the nature of the solute-solvent interaction which has implications for the mechanism of the hydrophobic effect for biomolecules.
Shapes of Nonsymmetric Capillary Bridges.
Pratt L, Gomez D, Muralidharan A, Pesika N J Phys Chem B. 2021; 125(44):12378-12383.
PMID: 34709808 PMC: 8591610. DOI: 10.1021/acs.jpcb.1c07448.
Ashbaugh H, Gibb B, Suating P J Phys Chem B. 2021; 125(13):3253-3268.
PMID: 33651614 PMC: 8040017. DOI: 10.1021/acs.jpcb.0c11017.
Monroe J, Jiao S, Davis R, Robinson Brown D, Katz L, Shell M Proc Natl Acad Sci U S A. 2020; 118(1).
PMID: 33372161 PMC: 7821046. DOI: 10.1073/pnas.2020205118.
Exploring the Free-Energy Landscape and Thermodynamics of Protein-Protein Association.
Tse C, Wickstrom L, Kvaratskhelia M, Gallicchio E, Levy R, Deng N Biophys J. 2020; 119(6):1226-1238.
PMID: 32877664 PMC: 7499063. DOI: 10.1016/j.bpj.2020.08.005.
Generic Mechanism for Pattern Formation in the Solvation Shells of Buckminsterfullerene.
Pantawane S, Bandyopadhyay D, Choudhury N ACS Omega. 2019; 3(1):1060-1068.
PMID: 31457948 PMC: 6641439. DOI: 10.1021/acsomega.7b01858.