Markovian Chemicals "in Silico" Design (MARCH-INSIDE), a Promising Approach for Computer-aided Molecular Design III: 2.5D Indices for the Discovery of Antibacterials
Overview
Authors
Affiliations
The present work continues our series on the use of MARCH-INSIDE molecular descriptors (parts I and II: J Mol Mod 8:237-245, [2002] and 9:395-407, [2003]). These descriptors encode information pertaining to the distribution of electrons in the molecule based on a simple stochastic approach to the idea of electronegativity equalization (Sanderson's principle). Here, 3D-MARCH-INSIDE molecular descriptors for 667 organic compounds are used as input for a linear discriminant analysis. This 2.5D-QSAR model discriminates between antibacterial compounds and non-antibacterial ones with 92.9% accuracy in training sets. On the other hand, the model classifies 94.0% of the compounds in test set correctly. Additionally, the present QSAR performs similar-to-better than other methods reported elsewhere. Finally, the discovery of a novel compound illustrates the use of the method. This compound, 2-bromo-3-(furan-2-yl)-3-oxo-propionamide has MIC50 of 6.25 and 12.50 microg/mL against Pseudomonas aeruginosa ATCC 27853 and Escherichia coli ATCC 27853, respectively while ampicillin, amoxicillin, clindamycin, and metronidazole have, for instance, MIC50 values higher than 250 mug/mL against E. coli. Consequently, the present method may becomes a useful tool for the in silico discovery of antibacterials.
Machine Learning Study of Metabolic Networks ChEMBL Data of Antibacterial Compounds.
Dieguez-Santana K, Casanola-Martin G, Torres R, Rasulev B, Green J, Gonzalez-Diaz H Mol Pharm. 2022; 19(7):2151-2163.
PMID: 35671399 PMC: 9986951. DOI: 10.1021/acs.molpharmaceut.2c00029.
Identification of Novel Antibacterials Using Machine Learning Techniques.
Ivanenkov Y, Zhavoronkov A, Yamidanov R, Osterman I, Sergiev P, Aladinskiy V Front Pharmacol. 2019; 10:913.
PMID: 31507413 PMC: 6719509. DOI: 10.3389/fphar.2019.00913.
Poisson parameters of antimicrobial activity: a quantitative structure-activity approach.
Sestras R, Jantschi L, Bolboaca S Int J Mol Sci. 2012; 13(4):5207-5229.
PMID: 22606039 PMC: 3344275. DOI: 10.3390/ijms13045207.
Garcia I, Fall Y, Gomez G, Gonzalez-Diaz H Mol Divers. 2010; 15(2):561-7.
PMID: 20931280 DOI: 10.1007/s11030-010-9280-3.
Docking and 3D-QSAR studies of acetohydroxy acid synthase inhibitor sulfonylurea derivatives.
Roy K, Paul S J Mol Model. 2009; 16(5):951-64.
PMID: 19841951 DOI: 10.1007/s00894-009-0596-9.