» Articles » PMID: 15703227

Neurodynamics of Biased Competition and Cooperation for Attention: a Model with Spiking Neurons

Overview
Journal J Neurophysiol
Specialties Neurology
Physiology
Date 2005 Feb 11
PMID 15703227
Citations 69
Authors
Affiliations
Soon will be listed here.
Abstract

Recent neurophysiological experiments have led to a promising "biased competition hypothesis" of the neural basis of attention. According to this hypothesis, attention appears as a sometimes nonlinear property that results from a top-down biasing effect that influences the competitive and cooperative interactions that work both within cortical areas and between cortical areas. In this paper we describe a detailed dynamical analysis of the synaptic and neuronal spiking mechanisms underlying biased competition. We perform a detailed analysis of the dynamical capabilities of the system by exploring the stationary attractors in the parameter space by a mean-field reduction consistent with the underlying synaptic and spiking dynamics. The nonstationary dynamical behavior, as measured in neuronal recording experiments, is studied by an integrate-and-fire model with realistic dynamics. This elucidates the role of cooperation and competition in the dynamics of biased competition and shows why feedback connections between cortical areas need optimally to be weaker by a factor of about 2.5 than the feedforward connections in an attentional network. We modeled the interaction between top-down attention and bottom-up stimulus contrast effects found neurophysiologically and showed that top-down attentional effects can be explained by external attention inputs biasing neurons to move to different parts of their nonlinear activation functions. Further, it is shown that, although NMDA nonlinear effects may be useful in attention, they are not necessary, with nonlinear effects (which may appear multiplicative) being produced in the way just described.

Citing Articles

Antifragile control systems in neuronal processing: a sensorimotor perspective.

Axenie C Biol Cybern. 2025; 119(2-3):7.

PMID: 39954086 PMC: 11829851. DOI: 10.1007/s00422-025-01003-7.


Rethinking simultaneous suppression in visual cortex via compressive spatiotemporal population receptive fields.

Kupers E, Kim I, Grill-Spector K Nat Commun. 2024; 15(1):6885.

PMID: 39128923 PMC: 11317513. DOI: 10.1038/s41467-024-51243-7.


Distributed and dynamical communication: a mechanism for flexible cortico-cortical interactions and its functional roles in visual attention.

Ni S, Harris B, Gong P Commun Biol. 2024; 7(1):550.

PMID: 38719883 PMC: 11078951. DOI: 10.1038/s42003-024-06228-z.


Causal Influence of Linguistic Learning on Perceptual and Conceptual Processing: A Brain-Constrained Deep Neural Network Study of Proper Names and Category Terms.

Nguyen P, Henningsen-Schomers M, Pulvermuller F J Neurosci. 2024; 44(9).

PMID: 38253531 PMC: 10904026. DOI: 10.1523/JNEUROSCI.1048-23.2023.


Rethinking simultaneous suppression in visual cortex via compressive spatiotemporal population receptive fields.

Kupers E, Kim I, Grill-Spector K bioRxiv. 2023; .

PMID: 37461470 PMC: 10350247. DOI: 10.1101/2023.06.24.546388.