Profiling Early Infection Responses: Pseudomonas Aeruginosa Eludes Host Defenses by Suppressing Antimicrobial Peptide Gene Expression
Overview
Authors
Affiliations
Insights into the host factors and mechanisms mediating the primary host responses after pathogen presentation remain limited, due in part to the complexity and genetic intractability of host systems. Here, we employ the model Drosophila melanogaster to dissect and identify early host responses that function in the initiation and progression of Pseudomonas aeruginosa pathogenesis. First, we use immune potentiation and genetic studies to demonstrate that flies mount a heightened defense against the highly virulent P. aeruginosa strain PA14 when first inoculated with strain CF5, which is avirulent in flies; this effect is mediated via the Imd and Toll signaling pathways. Second, we use whole-genome expression profiling to assess and compare the Drosophila early defense responses triggered by the PA14 vs. CF5 strains to identify genes whose expression patterns are different in susceptible vs. resistant host-pathogen interactions, respectively. Our results identify pathogenesis- and defense-specific genes and uncover a previously undescribed mechanism used by P. aeruginosa in the initial stages of its host interaction: suppression of Drosophila defense responses by limiting antimicrobial peptide gene expression. These results provide insights into the genetic factors that mediate or restrict pathogenesis during the early stages of the bacterial-host interaction to advance our understanding of P. aeruginosa-human infections.
IMD-mediated innate immune priming increases Drosophila survival and reduces pathogen transmission.
Prakash A, Fenner F, Shit B, Salminen T, Monteith K, Khan I PLoS Pathog. 2024; 20(6):e1012308.
PMID: 38857285 PMC: 11192365. DOI: 10.1371/journal.ppat.1012308.
Chen J, Lin G, Ma K, Li Z, Liegeois S, Ferrandon D PLoS Pathog. 2024; 20(6):e1012252.
PMID: 38833496 PMC: 11178223. DOI: 10.1371/journal.ppat.1012252.
Massively parallel mutant selection identifies genetic determinants of colonization of .
Miles J, Lozano G, Rajendhran J, Stabb E, Handelsman J, Broderick N mSystems. 2024; 9(3):e0131723.
PMID: 38380971 PMC: 10949475. DOI: 10.1128/msystems.01317-23.
KavianFar A, Taherkhani H, Ahmadi A, Salimi M, Lanjanian H, Masoudi-Nejad A BMC Pulm Med. 2024; 24(1):2.
PMID: 38166878 PMC: 10759706. DOI: 10.1186/s12890-023-02789-7.
Massively parallel mutant selection identifies genetic determinants of colonization of .
Miles J, Lozano G, Rajendhran J, Stabb E, Handelsman J, Broderick N bioRxiv. 2023; .
PMID: 38045230 PMC: 10690197. DOI: 10.1101/2023.11.20.567573.