» Articles » PMID: 15691944

Adaptation of the Yeast URA3 Selection System to Gram-negative Bacteria and Generation of a {delta}betCDE Pseudomonas Putida Strain

Overview
Date 2005 Feb 5
PMID 15691944
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

A general procedure for efficient generation of gene knockouts in gram-negative bacteria by the adaptation of the Saccharomyces cerevisiae URA3 selection system is described. A Pseudomonas putida strain lacking the URA3 homolog pyrF (encoding orotidine-5'-phosphate decarboxylase) was constructed, allowing the use of a plasmid-borne copy of the gene as the target of selection. The delivery vector pTEC contains the pyrF gene and promoter, a conditional origin of replication (oriR6K), an origin of transfer (mobRK2), and an antibiotic selection marker flanked by multiple sites for cloning appropriate DNA segments. The versatility of pyrF as a selection system, allowing both positive and negative selection of the marker, and the robustness of the selection, where pyrF is associated with uracil prototrophy and fluoroorotic acid sensitivity, make this setup a powerful tool for efficient homologous gene replacement in gram-negative bacteria. The system has been instrumental for complete deletion of the P. putida choline-O-sulfate utilization operon betCDE, a mutant which could not be produced by any of the other genetic strategies available.

Citing Articles

Pavlovian-Type Learning in Environmental Bacteria: Regulation of Herbicide Resistance by Arsenic in Pseudomonas putida.

Paez-Espino D, Durante-Rodriguez G, Fernandes E, Carmona M, de Lorenzo V Environ Microbiol. 2024; 26(12):e70012.

PMID: 39667752 PMC: 11637737. DOI: 10.1111/1462-2920.70012.


AND Logic Based on Suppressor tRNAs Enables Stringent Control of Sliding Base Editors in .

Velazquez E, de Lorenzo V ACS Synth Biol. 2024; 13(12):4191-4201.

PMID: 39660532 PMC: 11669171. DOI: 10.1021/acssynbio.4c00640.


Establishing a straightforward I-SceI-mediated recombination one-plasmid system for efficient genome editing in P. putida KT2440.

Meng H, Kobbing S, Blank L Microb Biotechnol. 2024; 17(7):e14531.

PMID: 39031514 PMC: 11258999. DOI: 10.1111/1751-7915.14531.


Hypermutation of specific genomic loci of Pseudomonas putida for continuous evolution of target genes.

Velazquez E, Alvarez B, Fernandez L, de Lorenzo V Microb Biotechnol. 2022; 15(9):2309-2323.

PMID: 35695013 PMC: 9437889. DOI: 10.1111/1751-7915.14098.


Targetron-Assisted Delivery of Exogenous DNA Sequences into through CRISPR-Aided Counterselection.

Velazquez E, Al-Ramahi Y, Tellechea-Luzardo J, Krasnogor N, de Lorenzo V ACS Synth Biol. 2021; 10(10):2552-2565.

PMID: 34601868 PMC: 8524655. DOI: 10.1021/acssynbio.1c00199.


References
1.
Stein D . Plasmids with easily excisable xylE cassettes. Gene. 1992; 117(1):157-8. DOI: 10.1016/0378-1119(92)90506-k. View

2.
Simon R, Hotte B, Klauke B, Kosier B . Isolation and characterization of insertion sequence elements from gram-negative bacteria by using new broad-host-range, positive selection vectors. J Bacteriol. 1991; 173(4):1502-8. PMC: 207288. DOI: 10.1128/jb.173.4.1502-1508.1991. View

3.
Nelson K, Weinel C, Paulsen I, Dodson R, HILBERT H, Martins Dos Santos V . Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol. 2003; 4(12):799-808. DOI: 10.1046/j.1462-2920.2002.00366.x. View

4.
Nissen P . Choline sulfate permease. Transfer of information from bacteria to higher plants?. Biochem Biophys Res Commun. 1968; 32(4):696-703. DOI: 10.1016/0006-291x(68)90295-7. View

5.
de Lorenzo V, Herrero M, Jakubzik U, Timmis K . Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol. 1990; 172(11):6568-72. PMC: 526846. DOI: 10.1128/jb.172.11.6568-6572.1990. View