Hernandez de la Torre M, Covaleda-Cortes G, Montesinos L, Covaleda D, Ortiz J, Pinol J
Int J Mol Sci. 2025; 26(3).
PMID: 39940919
PMC: 11817793.
DOI: 10.3390/ijms26031150.
Zhang Z, Han H, Zhao J, Liu Z, Deng L, Wu L
Mol Hortic. 2025; 5(1):7.
PMID: 39849641
PMC: 11756074.
DOI: 10.1186/s43897-024-00134-y.
Farvardin A, Gonzalez-Hernandez A, Llorens E, Camanes G, Scalschi L, Vicedo B
Plants (Basel). 2024; 13(15).
PMID: 39124177
PMC: 11314357.
DOI: 10.3390/plants13152059.
Gao X, Kaluarachchi H, Zhang Y, Hwang S, Hannoush R
PLoS One. 2024; 19(3):e0299804.
PMID: 38547072
PMC: 10977726.
DOI: 10.1371/journal.pone.0299804.
Chekan J, Mydy L, Pasquale M, Kersten R
Nat Prod Rep. 2024; 41(7):1020-1059.
PMID: 38411572
PMC: 11253845.
DOI: 10.1039/d3np00042g.
The soil-borne white root rot pathogen Rosellinia necatrix expresses antimicrobial proteins during host colonization.
Chavarro-Carrero E, Snelders N, Torres D, Kraege A, Lopez-Moral A, Petti G
PLoS Pathog. 2024; 20(1):e1011866.
PMID: 38236788
PMC: 10796067.
DOI: 10.1371/journal.ppat.1011866.
Plant Antimicrobial Peptides: Insights into Structure-Function Relationships for Practical Applications.
Slezina M, Odintsova T
Curr Issues Mol Biol. 2023; 45(4):3674-3704.
PMID: 37185763
PMC: 10136942.
DOI: 10.3390/cimb45040239.
Amaranthus hypochondriacus seeds as a rich source of cysteine rich bioactive peptides.
Moyer T, Schug W, Hicks L
Food Chem. 2022; 377:131959.
PMID: 34995961
PMC: 8821138.
DOI: 10.1016/j.foodchem.2021.131959.
Anti-Fungal Hevein-like Peptides Biosynthesized from Quinoa Cleavable Hololectins.
Loo S, Tay S, Kam A, Tang F, Fan J, Yang D
Molecules. 2021; 26(19).
PMID: 34641455
PMC: 8512870.
DOI: 10.3390/molecules26195909.
Expression and Refolding of the Plant Chitinase From for Applications as a Sustainable and Integrated Pest Management.
Sinelnikov I, Siedhoff N, Chulkin A, Zorov I, Schwaneberg U, Davari M
Front Bioeng Biotechnol. 2021; 9:728501.
PMID: 34621729
PMC: 8490864.
DOI: 10.3389/fbioe.2021.728501.
Analysis of a gene family for PDF-like peptides from Arabidopsis.
Omidvar R, Vosseler N, Abbas A, Gutmann B, Grunwald-Gruber C, Altmann F
Sci Rep. 2021; 11(1):18948.
PMID: 34556705
PMC: 8460643.
DOI: 10.1038/s41598-021-98175-6.
Basic β-1,3-Glucanase from Exhibits Antifungal Potential in Transgenic Tobacco Plants.
Rajninec M, Fratrikova M, Boszoradova E, Jopcik M, Bauer M, Libantova J
Plants (Basel). 2021; 10(8).
PMID: 34451792
PMC: 8401921.
DOI: 10.3390/plants10081747.
cDNA cloning, expression, and antifungal activity of chitinase from Ficus microcarpa latex: difference in antifungal action of chitinase with and without chitin-binding domain.
Takashima T, Henna H, Kozome D, Kitajima S, Uechi K, Taira T
Planta. 2021; 253(6):120.
PMID: 33987712
DOI: 10.1007/s00425-021-03639-8.
Genome-Wide Identification and Expression of Chitinase Class I Genes in Garlic ( L.) Cultivars Resistant and Susceptible to .
Filyushin M, Anisimova O, Kochieva E, Shchennikova A
Plants (Basel). 2021; 10(4).
PMID: 33917252
PMC: 8068077.
DOI: 10.3390/plants10040720.
Multiple Classes of Antimicrobial Peptides in Revealed by Prediction, Proteomics, and Mass Spectrometric Characterization.
Moyer T, Allen J, Shaw L, Hicks L
J Nat Prod. 2021; 84(2):444-452.
PMID: 33576231
PMC: 8601116.
DOI: 10.1021/acs.jnatprod.0c01203.
Toxicity and Antimicrobial Activities of L. (Amaranthaceae) Harvested From Formulated Soils at Different Growth Stages.
Jimoh M, Afolayan A, Lewu F
J Evid Based Integr Med. 2020; 25:2515690X20971578.
PMID: 33241708
PMC: 7705779.
DOI: 10.1177/2515690X20971578.
Ergosterol-targeting fusion antifungal peptide significantly increases the Verticillium wilt resistance of cotton.
Tong S, Yuan M, Liu Y, Li X, Jin D, Cheng X
Plant Biotechnol J. 2020; 19(5):926-936.
PMID: 33217142
PMC: 8131044.
DOI: 10.1111/pbi.13517.
Plant Antimicrobial Peptides: State of the Art, In Silico Prediction and Perspectives in the Omics Era.
Dos Santos-Silva C, Zupin L, Oliveira-Lima M, Vilela L, Bezerra-Neto J, Ferreira-Neto J
Bioinform Biol Insights. 2020; 14:1177932220952739.
PMID: 32952397
PMC: 7476358.
DOI: 10.1177/1177932220952739.
The interaction with fungal cell wall polysaccharides determines the salt tolerance of antifungal plant defensins.
Bleackley M, Dawson C, Payne J, Harvey P, Rosengren K, Quimbar P
Cell Surf. 2020; 5:100026.
PMID: 32743142
PMC: 7389181.
DOI: 10.1016/j.tcsw.2019.100026.
PepSAVI-MS Reveals a Proline-rich Antimicrobial Peptide in .
Moyer T, Heil L, Kirkpatrick C, Goldfarb D, LeFever W, Parsley N
J Nat Prod. 2019; 82(10):2744-2753.
PMID: 31557021
PMC: 6874829.
DOI: 10.1021/acs.jnatprod.9b00352.