Baek S, Park B, Chewaka L, So Y, Jung J, Lee S
Foods. 2025; 14(1.
PMID: 39796375
PMC: 11719824.
DOI: 10.3390/foods14010085.
Zhang W, Feng C, Zhang C, Song J, Li L, Xia M
J Ind Microbiol Biotechnol. 2024; 51.
PMID: 39341788
PMC: 11503474.
DOI: 10.1093/jimb/kuae036.
Tian J, Wei S, Liang W, Wang G
Synth Syst Biotechnol. 2024; 10(1):68-75.
PMID: 39263351
PMC: 11388042.
DOI: 10.1016/j.synbio.2024.08.005.
Ariano K, Farrington T, Schweiger P
Microbiol Resour Announc. 2024; 13(8):e0048924.
PMID: 39037319
PMC: 11320985.
DOI: 10.1128/mra.00489-24.
Zeng W, Shan X, Liu L, Zhou J
Bioresour Bioprocess. 2024; 9(1):121.
PMID: 38647819
PMC: 10992570.
DOI: 10.1186/s40643-022-00610-7.
CRISPR/Cpf1-FOKI-induced gene editing in .
Wang X, Li D, Qin Z, Chen J, Zhou J
Synth Syst Biotechnol. 2024; 9(2):369-379.
PMID: 38559425
PMC: 10980938.
DOI: 10.1016/j.synbio.2024.02.009.
Kombucha Fermentation of Olympus Mountain Tea () Sweetened with Thyme Honey: Physicochemical Analysis and Evaluation of Functional Properties.
Geraris Kartelias I, Karantonis H, Giaouris E, Panagiotakopoulos I, Nasopoulou C
Foods. 2023; 12(18).
PMID: 37761205
PMC: 10528074.
DOI: 10.3390/foods12183496.
Efficient biosynthesis of (R)-mandelic acid from styrene oxide by an adaptive evolutionary Gluconobacter oxydans STA.
Liu F, Zhou J, Hu M, Chen Y, Han J, Pan X
Biotechnol Biofuels Bioprod. 2023; 16(1):8.
PMID: 36639820
PMC: 9838050.
DOI: 10.1186/s13068-023-02258-7.
Development of a novel defined minimal medium for Gluconobacter oxydans 621H by systematic investigation of metabolic demands.
Battling S, Pastoors J, Deitert A, Gotzen T, Hartmann L, Schroder E
J Biol Eng. 2022; 16(1):31.
PMID: 36414992
PMC: 9682679.
DOI: 10.1186/s13036-022-00310-y.
2,5-Diketo-D-Gluconate Hyperproducing SJF2-1 with Reporting Multiple Genes Encoding the Membrane-Associated Flavoprotein-Cytochrome c Complexed Dehydrogenases.
Son H, Han S, Lee K
Microorganisms. 2022; 10(11).
PMID: 36363722
PMC: 9692623.
DOI: 10.3390/microorganisms10112130.
A facile process for adipic acid production in high yield by oxidation of 1,6-hexanediol using the resting cells of Gluconobacter oxydans.
Pyo S, Sayed M, Orn O, Amorrortu Gallo J, Fernandez Ros N, Hatti-Kaul R
Microb Cell Fact. 2022; 21(1):223.
PMID: 36307807
PMC: 9617331.
DOI: 10.1186/s12934-022-01947-6.
Selection of Acetic Acid Bacterial Strains and Vinegar Production From Local Maltese Food Sources.
Mizzi J, Gaggia F, Bozzi Cionci N, Di Gioia D, Attard E
Front Microbiol. 2022; 13:897825.
PMID: 35928157
PMC: 9343879.
DOI: 10.3389/fmicb.2022.897825.
Characterization of Two Dehydrogenases from Involved in the Transformation of Patulin to Ascladiol.
Chan E, Zhu Y, Li X, Zhou T, Seah S
Toxins (Basel). 2022; 14(7).
PMID: 35878161
PMC: 9323132.
DOI: 10.3390/toxins14070423.
Engineering a tunable bicistronic TetR autoregulation expression system in .
Bertucci M, Ariano K, Zumsteg M, Schweiger P
PeerJ. 2022; 10:e13639.
PMID: 35873911
PMC: 9306550.
DOI: 10.7717/peerj.13639.
The industrial versatility of Gluconobacter oxydans: current applications and future perspectives.
da Silva G, Oliveira S, Lima S, do Nascimento R, Baptista A, Fiaux S
World J Microbiol Biotechnol. 2022; 38(8):134.
PMID: 35688964
PMC: 9187504.
DOI: 10.1007/s11274-022-03310-8.
Oxidative Fermentation of Acetic Acid Bacteria and Its Products.
He Y, Xie Z, Zhang H, Liebl W, Toyama H, Chen F
Front Microbiol. 2022; 13:879246.
PMID: 35685922
PMC: 9171043.
DOI: 10.3389/fmicb.2022.879246.
Production of Gluconic Acid and Its Derivatives by Microbial Fermentation: Process Improvement Based on Integrated Routes.
Ma Y, Li B, Zhang X, Wang C, Chen W
Front Bioeng Biotechnol. 2022; 10:864787.
PMID: 35651548
PMC: 9149244.
DOI: 10.3389/fbioe.2022.864787.
Comparative Genomics of Acetic Acid Bacteria within the Genus in Light of Beehive Habitat Adaptation.
Harer L, Hilgarth M, Ehrmann M
Microorganisms. 2022; 10(5).
PMID: 35630502
PMC: 9147383.
DOI: 10.3390/microorganisms10051058.
Enhanced production of l-sorbose by systematic engineering of dehydrogenases in .
Liu L, Chen Y, Yu S, Chen J, Zhou J
Synth Syst Biotechnol. 2022; 7(2):730-737.
PMID: 35356389
PMC: 8927921.
DOI: 10.1016/j.synbio.2022.02.008.
Analogous Metabolic Decoupling in Pseudomonas putida and Comamonas testosteroni Implies Energetic Bypass to Facilitate Gluconeogenic Growth.
Wilkes R, Waldbauer J, Aristilde L
mBio. 2021; 12(6):e0325921.
PMID: 34903058
PMC: 8669468.
DOI: 10.1128/mbio.03259-21.