» Articles » PMID: 15659579

Ribosomal Protein L1 Recognizes the Same Specific Structural Motif in Its Target Sites on the Autoregulatory MRNA and 23S RRNA

Overview
Specialty Biochemistry
Date 2005 Jan 22
PMID 15659579
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

The RNA-binding ability of ribosomal protein L1 is of profound interest since the protein has a dual function as a ribosomal protein binding rRNA and as a translational repressor binding its mRNA. Here, we report the crystal structure of ribosomal protein L1 in complex with a specific fragment of its mRNA and compare it with the structure of L1 in complex with a specific fragment of 23S rRNA determined earlier. In both complexes, a strongly conserved RNA structural motif is involved in L1 binding through a conserved network of RNA-protein H-bonds inaccessible to the solvent. These interactions should be responsible for specific recognition between the protein and RNA. A large number of additional non-conserved RNA-protein H-bonds stabilizes both complexes. The added contribution of these non-conserved H-bonds makes the ribosomal complex much more stable than the regulatory one.

Citing Articles

Effect of erythromycin residuals in food on the development of resistance in : an study in .

Baranchyk Y, Gestels Z, Van den Bossche D, Abdellati S, Xavier B, Manoharan-Basil S PeerJ. 2024; 12:e17463.

PMID: 38827315 PMC: 11141549. DOI: 10.7717/peerj.17463.


Extraribosomal Functions of Bacterial Ribosomal Proteins-An Update, 2023.

Aseev L, Koledinskaya L, Boni I Int J Mol Sci. 2024; 25(5).

PMID: 38474204 PMC: 10931766. DOI: 10.3390/ijms25052957.


Zur and zinc increase expression of E. coli ribosomal protein L31 through RNA-mediated repression of the repressor L31p.

Rasmussen R, Wang S, Camarillo J, Sosnowski V, Cho B, Goo Y Nucleic Acids Res. 2022; 50(22):12739-12753.

PMID: 36533433 PMC: 9825181. DOI: 10.1093/nar/gkac1086.


Genetic Adaptation and Acquisition of Macrolide Resistance in Haemophilus spp. during Persistent Respiratory Tract Colonization in Chronic Obstructive Pulmonary Disease (COPD) Patients Receiving Long-Term Azithromycin Treatment.

Carrera-Salinas A, Gonzalez-Diaz A, Ehrlich R, Berbel D, Tubau F, Pomares X Microbiol Spectr. 2022; 11(1):e0386022.

PMID: 36475849 PMC: 9927455. DOI: 10.1128/spectrum.03860-22.


Rerouting of ribosomal proteins into splicing in plant organelles.

Wang C, Fourdin R, Quadrado M, Dargel-Graffin C, Tolleter D, Macherel D Proc Natl Acad Sci U S A. 2020; 117(47):29979-29987.

PMID: 33168708 PMC: 7703591. DOI: 10.1073/pnas.2004075117.


References
1.
. The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr. 1994; 50(Pt 5):760-3. DOI: 10.1107/S0907444994003112. View

2.
Gruber T, Kohrer C, Lung B, Shcherbakov D, Piendl W . Affinity of ribosomal protein S8 from mesophilic and (hyper)thermophilic archaea and bacteria for 16S rRNA correlates with the growth temperatures of the organisms. FEBS Lett. 2003; 549(1-3):123-8. DOI: 10.1016/s0014-5793(03)00760-9. View

3.
Nikulin A, Eliseikina I, Tishchenko S, Nevskaya N, Davydova N, Platonova O . Structure of the L1 protuberance in the ribosome. Nat Struct Biol. 2003; 10(2):104-8. DOI: 10.1038/nsb886. View

4.
Brunger A, Adams P, Clore G, DeLano W, Gros P, Grosse-Kunstleve R . Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998; 54(Pt 5):905-21. DOI: 10.1107/s0907444998003254. View

5.
Nevskaya N, Tischenko S, Fedorov R, Al-Karadaghi S, Liljas A, Kraft A . Archaeal ribosomal protein L1: the structure provides new insights into RNA binding of the L1 protein family. Structure. 2000; 8(4):363-71. DOI: 10.1016/s0969-2126(00)00116-7. View