» Articles » PMID: 15647478

Breakdown of Axonal Synaptic Vesicle Precursor Transport by Microglial Nitric Oxide

Overview
Journal J Neurosci
Specialty Neurology
Date 2005 Jan 14
PMID 15647478
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

The mechanism of axonal injury in inflammatory brain diseases is still unclear. Increased microglial production of nitric oxide (NO) is a common early sign in neuroinflammatory diseases. We found by fluorescence correlation spectroscopy that synaptophysin tagged with enhanced green fluorescence protein (synaptophysin-EGFP) moves anterogradely in axons of cultured neurons. Activated microglia focally inhibited the axonal movement of synaptophysin-EGFP in a NO synthase-dependent manner. Direct application of a NO donor to neurons resulted in inhibition of axonal transport of synaptophysin-EGFP and synaptotagmin I tagged with EGFP, mediated via phosphorylation of c-jun NH2-terminal kinase (JNK). Thus, overt production of reactive NO by activated microglia blocks the axonal transport of synaptic vesicle precursors via phosphorylation of JNK and could cause axonal and synaptic dysfunction.

Citing Articles

Integrative proteomics highlight presynaptic alterations and c-Jun misactivation as convergent pathomechanisms in ALS.

Aly A, Laszlo Z, Rajkumar S, Demir T, Hindley N, Lamont D Acta Neuropathol. 2023; 146(3):451-475.

PMID: 37488208 PMC: 10412488. DOI: 10.1007/s00401-023-02611-y.


Toward discovering a novel family of peptides targeting neuroinflammatory states of brain microglia and astrocytes.

Koss K, Son T, Li C, Hao Y, Cao J, Churchward M J Neurochem. 2023; 168(10):3386-3414.

PMID: 37171455 PMC: 10640667. DOI: 10.1111/jnc.15840.


Pathophysiology of neurodegenerative diseases: An interplay among axonal transport failure, oxidative stress, and inflammation?.

Tesco G, Lomoio S Semin Immunol. 2022; 59:101628.

PMID: 35779975 PMC: 9807734. DOI: 10.1016/j.smim.2022.101628.


Regenerative Effects of CDP-Choline: A Dose-Dependent Study in the Toxic Cuprizone Model of De- and Remyelination.

Gudi V, Schafer N, Gingele S, Stangel M, Skripuletz T Pharmaceuticals (Basel). 2021; 14(11).

PMID: 34832936 PMC: 8623145. DOI: 10.3390/ph14111156.


Effects of Reactive Oxygen and Nitrogen Species on TrkA Expression and Signalling: Implications for proNGF in Aging and Alzheimer's Disease.

Kropf E, Fahnestock M Cells. 2021; 10(8).

PMID: 34440751 PMC: 8392605. DOI: 10.3390/cells10081983.


References
1.
Go Y, Patel R, Maland M, Park H, Beckman J, Darley-Usmar V . Evidence for peroxynitrite as a signaling molecule in flow-dependent activation of c-Jun NH(2)-terminal kinase. Am J Physiol. 1999; 277(4):H1647-53. DOI: 10.1152/ajpheart.1999.277.4.H1647. View

2.
Kaether C, Skehel P, Dotti C . Axonal membrane proteins are transported in distinct carriers: a two-color video microscopy study in cultured hippocampal neurons. Mol Biol Cell. 2000; 11(4):1213-24. PMC: 14842. DOI: 10.1091/mbc.11.4.1213. View

3.
Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Bruck W . Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain. 2000; 123 ( Pt 6):1174-83. DOI: 10.1093/brain/123.6.1174. View

4.
Bowman A, Kamal A, Ritchings B, Philp A, McGrail M, Gindhart J . Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell. 2000; 103(4):583-94. DOI: 10.1016/s0092-8674(00)00162-8. View

5.
Verhey K, Meyer D, Deehan R, Blenis J, Schnapp B, Rapoport T . Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J Cell Biol. 2001; 152(5):959-70. PMC: 2198804. DOI: 10.1083/jcb.152.5.959. View