Straughan R, Kadry K, Parikh S, Edelman E, Nezami F
ArXiv. 2024; .
PMID: 38827462
PMC: 11142312.
Curcio N, Rosato A, Mazzaccaro D, Nano G, Conti M, Matrone G
Sci Rep. 2023; 13(1):19911.
PMID: 37964071
PMC: 10645924.
DOI: 10.1038/s41598-023-46949-5.
Straughan R, Kadry K, Parikh S, Edelman E, Nezami F
Comput Biol Med. 2023; 165:107341.
PMID: 37611423
PMC: 10528179.
DOI: 10.1016/j.compbiomed.2023.107341.
Starczynski M, Dudek S, Barus P, Niedzieska E, Wawrzenczyk M, Ochijewicz D
Diagnostics (Basel). 2023; 13(12).
PMID: 37371012
PMC: 10297310.
DOI: 10.3390/diagnostics13122117.
Lan G, Twa M, Song C, Feng J, Huang Y, Xu J
Comput Struct Biotechnol J. 2023; 21:2664-2687.
PMID: 37181662
PMC: 10173410.
DOI: 10.1016/j.csbj.2023.04.009.
Measurement of Layer-Specific Mechanical Properties of Intact Blood Vessels Based on Intravascular Optical Coherence Tomography.
Guo Q, Chen J, Liu H, Sun C
Cardiovasc Eng Technol. 2022; 14(1):67-78.
PMID: 35710860
DOI: 10.1007/s13239-022-00636-0.
In Vivo Intravascular Optical Coherence Tomography (IVOCT) Structural and Blood Flow Imaging Based Mechanical Simulation Analysis of a Blood Vessel.
Sun C, Pan H, Jia J, Liu H, Chen J
Cardiovasc Eng Technol. 2022; 13(5):685-698.
PMID: 35112317
DOI: 10.1007/s13239-022-00608-4.
Optical Coherence Tomography-Derived Changes in Plaque Structural Stress Over the Cardiac Cycle: A New Method for Plaque Biomechanical Assessment.
Huang J, Yang F, Gutierrez-Chico J, Xu T, Wu J, Wang L
Front Cardiovasc Med. 2021; 8:715995.
PMID: 34805298
PMC: 8600113.
DOI: 10.3389/fcvm.2021.715995.
A platform for high-fidelity patient-specific structural modelling of atherosclerotic arteries: from intravascular imaging to three-dimensional stress distributions.
Kadry K, Olender M, Marlevi D, Edelman E, Nezami F
J R Soc Interface. 2021; 18(182):20210436.
PMID: 34583562
PMC: 8479357.
DOI: 10.1098/rsif.2021.0436.
Using Optical Coherence Tomography and Intravascular Ultrasound Imaging to Quantify Coronary Plaque Cap Stress/Strain and Progression: A Follow-Up Study Using 3D Thin-Layer Models.
Lv R, Maehara A, Matsumura M, Wang L, Zhang C, Huang M
Front Bioeng Biotechnol. 2021; 9:713525.
PMID: 34497800
PMC: 8419245.
DOI: 10.3389/fbioe.2021.713525.
[Progress of quantitative intravascular optical coherence tomography].
Yang F, Sun Z
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2020; 37(2):358-364.
PMID: 32329290
PMC: 9927616.
DOI: 10.7507/1001-5515.201906061.
Structural modelling of the cardiovascular system.
Owen B, Bojdo N, Jivkov A, Keavney B, Revell A
Biomech Model Mechanobiol. 2018; 17(5):1217-1242.
PMID: 29911296
PMC: 6154127.
DOI: 10.1007/s10237-018-1024-9.
Microscale characterization of prostate biopsies tissues using optical coherence elastography and second harmonic generation imaging.
Yuting L, Li C, Zhou K, Guan G, Appleton P, Lang S
Lab Invest. 2017; 98(3):380-390.
PMID: 29251735
PMC: 5842892.
DOI: 10.1038/labinvest.2017.132.
Ultrahigh-Resolution Optical Coherence Elastography Images Cellular-Scale Stiffness of Mouse Aorta.
Wijesinghe P, Johansen N, Curatolo A, Sampson D, Ganss R, Kennedy B
Biophys J. 2017; 113(11):2540-2551.
PMID: 29212007
PMC: 5738526.
DOI: 10.1016/j.bpj.2017.09.022.
Optical coherence elastography - OCT at work in tissue biomechanics [Invited].
Larin K, Sampson D
Biomed Opt Express. 2017; 8(2):1172-1202.
PMID: 28271011
PMC: 5330567.
DOI: 10.1364/BOE.8.001172.
Stress analysis of fracture of atherosclerotic plaques: crack propagation modeling.
Rezvani-Sharif A, Tafazzoli-Shadpour M, Kazemi-Saleh D, Sotoudeh-Anvari M
Med Biol Eng Comput. 2016; 55(8):1389-1400.
PMID: 27943104
DOI: 10.1007/s11517-016-1600-z.
Microstructure-based biomechanics of coronary arteries in health and disease.
Chen H, Kassab G
J Biomech. 2016; 49(12):2548-59.
PMID: 27086118
PMC: 5028318.
DOI: 10.1016/j.jbiomech.2016.03.023.
Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography.
Kennedy K, Chin L, McLaughlin R, Latham B, Saunders C, Sampson D
Sci Rep. 2015; 5:15538.
PMID: 26503225
PMC: 4622092.
DOI: 10.1038/srep15538.
The influence of constitutive law choice used to characterise atherosclerotic tissue material properties on computing stress values in human carotid plaques.
Teng Z, Yuan J, Feng J, Zhang Y, Brown A, Wang S
J Biomech. 2015; 48(14):3912-21.
PMID: 26472305
PMC: 4655867.
DOI: 10.1016/j.jbiomech.2015.09.023.
Optical coherence elastography for tissue characterization: a review.
Wang S, Larin K
J Biophotonics. 2014; 8(4):279-302.
PMID: 25412100
PMC: 4410708.
DOI: 10.1002/jbio.201400108.