Yeak K, Boekhorst J, Wels M, Abee T, Wells-Bennik M
BMC Microbiol. 2023; 23(1):17.
PMID: 36653740
PMC: 9847131.
DOI: 10.1186/s12866-022-02700-0.
Rodriguez Ayala F, Bartolini M, Grau R
Front Microbiol. 2020; 11:1761.
PMID: 33042030
PMC: 7522486.
DOI: 10.3389/fmicb.2020.01761.
Lee I, Kim K, Lee S, Lee S, Hwang E, Shin K
J Exp Bot. 2018; 69(15):3609-3623.
PMID: 29722815
PMC: 6022639.
DOI: 10.1093/jxb/ery164.
Carlsson G, Hasse D, Cardinale F, Prandi C, Andersson I
J Exp Bot. 2018; 69(9):2345-2354.
PMID: 29394369
PMC: 5913616.
DOI: 10.1093/jxb/ery036.
Baba S, Hoshino T, Ito L, Kumasaka T
Acta Crystallogr D Biol Crystallogr. 2013; 69(Pt 9):1839-49.
PMID: 23999307
PMC: 3760132.
DOI: 10.1107/S0907444913018027.
Smoke-derived karrikin perception by the α/β-hydrolase KAI2 from Arabidopsis.
Guo Y, Zheng Z, La Clair J, Chory J, Noel J
Proc Natl Acad Sci U S A. 2013; 110(20):8284-9.
PMID: 23613584
PMC: 3657771.
DOI: 10.1073/pnas.1306265110.
Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14.
Zhao L, Zhou X, Wu Z, Yi W, Xu Y, Li S
Cell Res. 2013; 23(3):436-9.
PMID: 23381136
PMC: 3587710.
DOI: 10.1038/cr.2013.19.
The structure of the karrikin-insensitive protein (KAI2) in Arabidopsis thaliana.
Bythell-Douglas R, Waters M, Scaffidi A, Flematti G, Smith S, Bond C
PLoS One. 2013; 8(1):e54758.
PMID: 23349965
PMC: 3548789.
DOI: 10.1371/journal.pone.0054758.
Karrikins force a rethink of strigolactone mode of action.
Waters M, Scaffidi A, Flematti G, Smith S
Plant Signal Behav. 2012; 7(8):969-72.
PMID: 22827937
PMC: 3474697.
DOI: 10.4161/psb.20977.
An α/β hydrolase and associated Per-ARNT-Sim domain comprise a bipartite sensing module coupled with diverse output domains.
Nadezhdin E, Brody M, Price C
PLoS One. 2011; 6(9):e25418.
PMID: 21980452
PMC: 3183031.
DOI: 10.1371/journal.pone.0025418.
Crystal structure of a soluble form of human monoglyceride lipase in complex with an inhibitor at 1.35 Å resolution.
Schalk-Hihi C, Schubert C, Alexander R, Bayoumy S, Clemente J, Deckman I
Protein Sci. 2011; 20(4):670-83.
PMID: 21308848
PMC: 3081545.
DOI: 10.1002/pro.596.
Crystal structure of the human N-Myc downstream-regulated gene 2 protein provides insight into its role as a tumor suppressor.
Hwang J, Kim Y, Kang H, Jaroszewski L, Deacon A, Lee H
J Biol Chem. 2011; 286(14):12450-60.
PMID: 21247902
PMC: 3069448.
DOI: 10.1074/jbc.M110.170803.
The structure of PhaZ7 at atomic (1.2 A) resolution reveals details of the active site and suggests a substrate-binding mode.
Wakadkar S, Hermawan S, Jendrossek D, Papageorgiou A
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010; 66(Pt 6):648-54.
PMID: 20516591
PMC: 2882761.
DOI: 10.1107/S174430911001434X.
Red light activates the sigmaB-mediated general stress response of Bacillus subtilis via the energy branch of the upstream signaling cascade.
Avila-Perez M, van der Steen J, Kort R, Hellingwerf K
J Bacteriol. 2009; 192(3):755-62.
PMID: 19948797
PMC: 2812468.
DOI: 10.1128/JB.00826-09.
Arabidopsis N-MYC DOWNREGULATED-LIKE1, a positive regulator of auxin transport in a G protein-mediated pathway.
Mudgil Y, Uhrig J, Zhou J, Temple B, Jiang K, Jones A
Plant Cell. 2009; 21(11):3591-609.
PMID: 19948787
PMC: 2798320.
DOI: 10.1105/tpc.109.065557.
Refined homology model of monoacylglycerol lipase: toward a selective inhibitor.
Bowman A, Makriyannis A
J Comput Aided Mol Des. 2009; 23(11):799-806.
PMID: 19543978
PMC: 3308346.
DOI: 10.1007/s10822-009-9289-9.
Expression, crystallization and preliminary crystallographic analysis of the PAS domain of RsbP, a stress-response phosphatase from Bacillus subtilis.
Makino M, Kondo S, Kaneko T, Baba S, Hirata K, Kumasaka T
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009; 65(Pt 6):559-61.
PMID: 19478430
PMC: 2688409.
DOI: 10.1107/S1744309109014158.
Bypass suppression analysis maps the signalling pathway within a multidomain protein: the RsbP energy stress phosphatase 2C from Bacillus subtilis.
Brody M, Stewart V, Price C
Mol Microbiol. 2009; 72(5):1221-34.
PMID: 19432806
PMC: 2752654.
DOI: 10.1111/j.1365-2958.2009.06722.x.
Role of RsbU in controlling SigB activity in Staphylococcus aureus following alkaline stress.
Pane-Farre J, Jonas B, Hardwick S, Gronau K, Lewis R, Hecker M
J Bacteriol. 2009; 191(8):2561-73.
PMID: 19201800
PMC: 2668408.
DOI: 10.1128/JB.01514-08.
Contributions of ATP, GTP, and redox state to nutritional stress activation of the Bacillus subtilis sigmaB transcription factor.
Zhang S, Haldenwang W
J Bacteriol. 2005; 187(22):7554-60.
PMID: 16267279
PMC: 1280325.
DOI: 10.1128/JB.187.22.7554-7560.2005.