Hala D
Syst Biol Reprod Med. 2023; 69(4):271-287.
PMID: 37023256
PMC: 10461611.
DOI: 10.1080/19396368.2023.2188996.
Ohta J
Sci Rep. 2022; 12(1):3984.
PMID: 35296702
PMC: 8927339.
DOI: 10.1038/s41598-022-07836-7.
Guerra-Renteria A, Garcia-Ramirez M, Gomez-Hermosillo C, Gomez-Guzman A, Gonzalez-Garcia Y, Gonzalez-Reynoso O
Int J Mol Sci. 2019; 20(8).
PMID: 31018518
PMC: 6515159.
DOI: 10.3390/ijms20081978.
Xi Y, Wang F
PLoS One. 2019; 14(2):e0210539.
PMID: 30721240
PMC: 6363282.
DOI: 10.1371/journal.pone.0210539.
Horvat P, Koller M, Braunegg G
World J Microbiol Biotechnol. 2015; 31(9):1315-28.
PMID: 26066363
DOI: 10.1007/s11274-015-1887-1.
Integration of a constraint-based metabolic model of Brassica napus developing seeds with (13)C-metabolic flux analysis.
Hay J, Shi H, Heinzel N, Hebbelmann I, Rolletschek H, Schwender J
Front Plant Sci. 2015; 5:724.
PMID: 25566296
PMC: 4271587.
DOI: 10.3389/fpls.2014.00724.
Promise and reality in the expanding field of network interaction analysis: metabolic networks.
Bazzani S
Bioinform Biol Insights. 2014; 8:83-91.
PMID: 24812497
PMC: 3999820.
DOI: 10.4137/BBI.S12466.
Comparison on extreme pathways reveals nature of different biological processes.
Xi Y, Zhao Y, Wang L, Wang F
BMC Syst Biol. 2014; 8 Suppl 1:S10.
PMID: 24565046
PMC: 4080357.
DOI: 10.1186/1752-0509-8-S1-S10.
Metabolic analyses elucidate non-trivial gene targets for amplifying dihydroartemisinic acid production in yeast.
Misra A, Conway M, Johnnie J, Qureshi T, Lige B, Derrick A
Front Microbiol. 2013; 4:200.
PMID: 23898325
PMC: 3724057.
DOI: 10.3389/fmicb.2013.00200.
Optimal flux spaces of genome-scale stoichiometric models are determined by a few subnetworks.
Kelk S, Olivier B, Stougie L, Bruggeman F
Sci Rep. 2012; 2:580.
PMID: 22896812
PMC: 3419370.
DOI: 10.1038/srep00580.
Analysis of metabolic subnetworks by flux cone projection.
Marashi S, David L, Bockmayr A
Algorithms Mol Biol. 2012; 7(1):17.
PMID: 22642830
PMC: 3408373.
DOI: 10.1186/1748-7188-7-17.
Enumerating metabolic pathways for the production of heterologous target chemicals in chassis organisms.
Carbonell P, Fichera D, Pandit S, Faulon J
BMC Syst Biol. 2012; 6:10.
PMID: 22309974
PMC: 3311073.
DOI: 10.1186/1752-0509-6-10.
FASIMU: flexible software for flux-balance computation series in large metabolic networks.
Hoppe A, Hoffmann S, Gerasch A, Gille C, Holzhutter H
BMC Bioinformatics. 2011; 12:28.
PMID: 21255455
PMC: 3038154.
DOI: 10.1186/1471-2105-12-28.
Deep epistasis in human metabolism.
Imielinski M, Belta C
Chaos. 2010; 20(2):026104.
PMID: 20590333
PMC: 2909311.
DOI: 10.1063/1.3456056.
Which metabolic pathways generate and characterize the flux space? A comparison among elementary modes, extreme pathways and minimal generators.
Llaneras F, Pico J
J Biomed Biotechnol. 2010; 2010:753904.
PMID: 20467567
PMC: 2868190.
DOI: 10.1155/2010/753904.
On algebraic properties of extreme pathways in metabolic networks.
Jevremovic D, Trinh C, Srienc F, Boley D
J Comput Biol. 2010; 17(2):107-19.
PMID: 20170399
PMC: 2909116.
DOI: 10.1089/cmb.2009.0020.
Functional states of the genome-scale Escherichia coli transcriptional regulatory system.
Gianchandani E, Joyce A, Palsson B, Papin J
PLoS Comput Biol. 2009; 5(6):e1000403.
PMID: 19503608
PMC: 2685017.
DOI: 10.1371/journal.pcbi.1000403.
Analysis on relationship between extreme pathways and correlated reaction sets.
Xi Y, Chen Y, Cao M, Wang W, Wang F
BMC Bioinformatics. 2009; 10 Suppl 1:S58.
PMID: 19208161
PMC: 2648798.
DOI: 10.1186/1471-2105-10-S1-S58.
Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism.
Trinh C, Wlaschin A, Srienc F
Appl Microbiol Biotechnol. 2008; 81(5):813-26.
PMID: 19015845
PMC: 2909134.
DOI: 10.1007/s00253-008-1770-1.
Exhaustive identification of steady state cycles in large stoichiometric networks.
Wright J, Wagner A
BMC Syst Biol. 2008; 2:61.
PMID: 18616835
PMC: 2478680.
DOI: 10.1186/1752-0509-2-61.