» Articles » PMID: 15609514

Development of Mouse Hepatitis Virus and SARS-CoV Infectious CDNA Constructs

Overview
Date 2004 Dec 22
PMID 15609514
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

The genomes of transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV) have been generated with a novel construction strategy that allows for the assembly of very large RNA and DNA genomes from a panel of contiguous cDNA subclones. Recombinant viruses generated from these methods contained the appropriate marker mutations and replicated as efficiently as wild-type virus. The MHV cloning strategy can also be used to generate recombinant viruses that contain foreign genes or mutations at virtually any given nucleotide. MHV molecular viruses were engineered to express green fluorescent protein (GFP), demonstrating the feasibility of the systematic assembly approach to create recombinant viruses expressing foreign genes. The systematic assembly approach was used to develop an infectious clone of the newly identified human coronavirus, the serve acute respiratory syndrome virus (SARS-CoV). Our cloning and assembly strategy generated an infectious clone within 2 months of identification of the causative agent of SARS, providing a critical tool to study coronavirus pathogenesis and replication. The availability of coronavirus infectious cDNAs heralds a new era in coronavirus genetics and genomic applications, especially within the replicase proteins whose functions in replication and pathogenesis are virtually unknown.

Citing Articles

Ayurvedic and Chinese Herbs against Coronaviruses.

Gasmi A, Kanwal S, Oliinyk P, Lysiuk R, Shanaida M, Benahmed A Curr Pharm Des. 2024; 30(21):1681-1698.

PMID: 38685809 DOI: 10.2174/0113816128269864231112094917.


Reverse genetics systems for SARS-CoV-2: Development and applications.

Cai H, Huang Y Virol Sin. 2023; 38(6):837-850.

PMID: 37832720 PMC: 10786661. DOI: 10.1016/j.virs.2023.10.001.


A call for an independent inquiry into the origin of the SARS-CoV-2 virus.

Harrison N, Sachs J Proc Natl Acad Sci U S A. 2022; 119(21):e2202769119.

PMID: 35588448 PMC: 9173817. DOI: 10.1073/pnas.2202769119.


COVID-19 is a natural infectious disease.

Li Z, Jiang J, Tong Y, Ruan X, Xu J J Biosaf Biosecur. 2021; 4(1):38-42.

PMID: 34927018 PMC: 8664692. DOI: 10.1016/j.jobb.2021.11.001.


Host Manipulation Mechanisms of SARS-CoV-2.

Massey S Acta Biotheor. 2021; 70(1):4.

PMID: 34902063 PMC: 8667538. DOI: 10.1007/s10441-021-09425-z.


References
1.
de Vries A, Horzinek M, Rottier P, de Groot R . The Genome Organization of the Nidovirales: Similarities and Differences between Arteri-, Toro-, and Coronaviruses. Semin Virol. 2020; 8(1):33-47. PMC: 7128191. DOI: 10.1006/smvy.1997.0104. View

2.
Delmas B, Gelfi J, LHaridon R, Vogel L, Sjostrom H, Noren O . Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature. 1992; 357(6377):417-20. PMC: 7095137. DOI: 10.1038/357417a0. View

3.
van Zijl M, Quint W, Briaire J, de Rover T, Gielkens A, Berns A . Regeneration of herpesviruses from molecularly cloned subgenomic fragments. J Virol. 1988; 62(6):2191-5. PMC: 253328. DOI: 10.1128/JVI.62.6.2191-2195.1988. View

4.
Williams G, Chang R, Brian D . A phylogenetically conserved hairpin-type 3' untranslated region pseudoknot functions in coronavirus RNA replication. J Virol. 1999; 73(10):8349-55. PMC: 112852. DOI: 10.1128/JVI.73.10.8349-8355.1999. View

5.
Sanchez C, Gebauer F, Sune C, Mendez A, Dopazo J, Enjuanes L . Genetic evolution and tropism of transmissible gastroenteritis coronaviruses. Virology. 1992; 190(1):92-105. PMC: 7131265. DOI: 10.1016/0042-6822(92)91195-z. View