EcoCyc: a Comprehensive Database Resource for Escherichia Coli
Overview
Authors
Affiliations
The EcoCyc database (http://EcoCyc.org/) is a comprehensive source of information on the biology of the prototypical model organism Escherichia coli K12. The mission for EcoCyc is to contain both computable descriptions of, and detailed comments describing, all genes, proteins, pathways and molecular interactions in E.coli. Through ongoing manual curation, extensive information such as summary comments, regulatory information, literature citations and evidence types has been extracted from 8862 publications and added to Version 8.5 of the EcoCyc database. The EcoCyc database can be accessed through a World Wide Web interface, while the downloadable Pathway Tools software and data files enable computational exploration of the data and provide enhanced querying capabilities that web interfaces cannot support. For example, EcoCyc contains carefully curated information that can be used as training sets for bioinformatics prediction of entities such as promoters, operons, genetic networks, transcription factor binding sites, metabolic pathways, functionally related genes, protein complexes and protein-ligand interactions.
CRISPRi-ART enables functional genomics of diverse bacteriophages using RNA-binding dCas13d.
Adler B, Al-Shimary M, Patel J, Armbruster E, Colognori D, Charles E Nat Microbiol. 2025; 10(3):694-709.
PMID: 40011704 PMC: 11879866. DOI: 10.1038/s41564-025-01935-7.
Tiefenbacher S, Pezo V, Marliere P, Roberts T, Panke S Sci Rep. 2024; 14(1):24102.
PMID: 39406725 PMC: 11480407. DOI: 10.1038/s41598-024-73407-7.
Hosoda S, Iwata H, Miura T, Tanabe M, Okada T, Mochizuki A BMC Bioinformatics. 2024; 25(1):297.
PMID: 39256657 PMC: 11389226. DOI: 10.1186/s12859-024-05921-4.
UNRAVELING CRP/cAMP-MEDIATED METABOLIC REGULATION IN PERSISTER CELLS.
Ngo H, Mohiuddin S, Ananda A, Orman M bioRxiv. 2024; .
PMID: 38915711 PMC: 11195080. DOI: 10.1101/2024.06.10.598332.
Linking genotypic and phenotypic changes in the long-term evolution experiment using metabolomics.
Favate J, Skalenko K, Chiles E, Su X, Yadavalli S, Shah P Elife. 2023; 12.
PMID: 37991493 PMC: 10665018. DOI: 10.7554/eLife.87039.