» Articles » PMID: 15574746

Apoptosis-inducing Factor Substitutes for Caspase Executioners in NMDA-triggered Excitotoxic Neuronal Death

Overview
Journal J Neurosci
Specialty Neurology
Date 2004 Dec 3
PMID 15574746
Citations 116
Authors
Affiliations
Soon will be listed here.
Abstract

The profound neuroprotection observed in poly(ADP-ribose) polymerase-1 (PARP-1) null mice to ischemic and excitotoxic injury positions PARP-1 as a major mediator of neuronal cell death. We report here that apoptosis-inducing factor (AIF) mediates PARP-1-dependent glutamate excitotoxicity in a caspase-independent manner after translocation from the mitochondria to the nucleus. In primary murine cortical cultures, neurotoxic NMDA exposure triggers AIF translocation, mitochondrial membrane depolarization, and phosphatidyl serine exposure on the cell surface, which precedes cytochrome c release and caspase activation. NMDA neurotoxicity is not affected by broad-spectrum caspase inhibitors, but it is prevented by Bcl-2 overexpression and a neutralizing antibody to AIF. These results link PARP-1 activation with AIF translocation in NMDA-triggered excitotoxic neuronal death and provide a paradigm in which AIF can substitute for caspase executioners.

Citing Articles

Advances in non-apoptotic regulated cell death: implications for malignant tumor treatment.

Zhang Y, Yi S, Luan M Front Oncol. 2025; 15:1519119.

PMID: 39949740 PMC: 11821507. DOI: 10.3389/fonc.2025.1519119.


Newcastle disease virus infection induces parthanatos in tumor cells via calcium waves.

Qu Y, Wang S, Jiang H, Liao Y, Qiu X, Tan L PLoS Pathog. 2024; 20(12):e1012737.

PMID: 39621796 PMC: 11637436. DOI: 10.1371/journal.ppat.1012737.


Emerging mechanisms of lipid peroxidation in regulated cell death and its physiological implications.

Zheng Y, Sun J, Luo Z, Li Y, Huang Y Cell Death Dis. 2024; 15(11):859.

PMID: 39587094 PMC: 11589755. DOI: 10.1038/s41419-024-07244-x.


NMDA Receptors: Distribution, Role, and Insights into Neuropsychiatric Disorders.

Beaurain M, Salabert A, Payoux P, Gras E, Talmont F Pharmaceuticals (Basel). 2024; 17(10).

PMID: 39458906 PMC: 11509972. DOI: 10.3390/ph17101265.


Neuronal membrane proteasome-derived peptides modulate NMDAR-dependent neuronal signaling to promote changes in gene expression.

Turker F, Brennan A, Margolis S Mol Biol Cell. 2023; 35(1):ar6.

PMID: 37910253 PMC: 10881162. DOI: 10.1091/mbc.E23-06-0218.


References
1.
Masutani M, Suzuki H, Kamada N, Watanabe M, Ueda O, Nozaki T . Poly(ADP-ribose) polymerase gene disruption conferred mice resistant to streptozotocin-induced diabetes. Proc Natl Acad Sci U S A. 1999; 96(5):2301-4. PMC: 26778. DOI: 10.1073/pnas.96.5.2301. View

2.
Burkart V, Wang Z, Radons J, Heller B, Herceg Z, Stingl L . Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozocin. Nat Med. 1999; 5(3):314-9. DOI: 10.1038/6535. View

3.
Mandir A, Przedborski S, Jackson-Lewis V, Wang Z, Simbulan-Rosenthal C, Smulson M . Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc Natl Acad Sci U S A. 1999; 96(10):5774-9. PMC: 21936. DOI: 10.1073/pnas.96.10.5774. View

4.
Pieper A, Verma A, Zhang J, Snyder S . Poly (ADP-ribose) polymerase, nitric oxide and cell death. Trends Pharmacol Sci. 1999; 20(4):171-81. DOI: 10.1016/s0165-6147(99)01292-4. View

5.
Affar E, Duriez P, Shah R, Winstall E, Germain M, Boucher C . Immunological determination and size characterization of poly(ADP-ribose) synthesized in vitro and in vivo. Biochim Biophys Acta. 1999; 1428(2-3):137-46. DOI: 10.1016/s0304-4165(99)00054-9. View