Rouzine I
Viruses. 2025; 17(2).
PMID: 40006952
PMC: 11861269.
DOI: 10.3390/v17020197.
Feng Z, Huang J, Baboo S, Diedrich J, Bangaru S, Paulson J
bioRxiv. 2024; .
PMID: 39713475
PMC: 11661143.
DOI: 10.1101/2024.12.10.627775.
Joseph J
Mol Biol Evol. 2024; 41(6).
PMID: 38829800
PMC: 11173204.
DOI: 10.1093/molbev/msae107.
Caetano-Anolles K, Hernandez N, Mughal F, Tomaszewski T, Caetano-Anolles G
Methods Microbiol. 2024; 50:27-81.
PMID: 38620818
PMC: 8590929.
DOI: 10.1016/bs.mim.2021.10.002.
Schwab B, Yin J
Virus Evol. 2024; 10(1):vead082.
PMID: 38361828
PMC: 10868543.
DOI: 10.1093/ve/vead082.
A Glimpse on the Evolution of RNA Viruses: Implications and Lessons from SARS-CoV-2.
Simicic P, Zidovec-Lepej S
Viruses. 2023; 15(1).
PMID: 36680042
PMC: 9866536.
DOI: 10.3390/v15010001.
Higher-order epistasis and phenotypic prediction.
Zhou J, Wong M, Chen W, Krainer A, Kinney J, McCandlish D
Proc Natl Acad Sci U S A. 2022; 119(39):e2204233119.
PMID: 36129941
PMC: 9522415.
DOI: 10.1073/pnas.2204233119.
Design of an optimal combination therapy with broadly neutralizing antibodies to suppress HIV-1.
LaMont C, Otwinowski J, Vanshylla K, Gruell H, Klein F, Nourmohammad A
Elife. 2022; 11.
PMID: 35852143
PMC: 9467514.
DOI: 10.7554/eLife.76004.
Searching for a mechanistic description of pairwise epistasis in protein systems.
Barnes J, Miller C, Ytreberg F
Proteins. 2022; 90(7):1474-1485.
PMID: 35218569
PMC: 9177791.
DOI: 10.1002/prot.26328.
Quantifying the dynamics of viral recombination during free virus and cell-to-cell transmission in HIV-1 infection.
Kreger J, Garcia J, Zhang H, Komarova N, Wodarz D, Levy D
Virus Evol. 2021; 7(1):veab026.
PMID: 34012557
PMC: 8117450.
DOI: 10.1093/ve/veab026.
MrHAMER yields highly accurate single molecule viral sequences enabling analysis of intra-host evolution.
Gallardo C, Wang S, Montiel-Garcia D, Little S, Smith D, Routh A
Nucleic Acids Res. 2021; 49(12):e70.
PMID: 33849057
PMC: 8266615.
DOI: 10.1093/nar/gkab231.
Long-term experimental evolution of HIV-1 reveals effects of environment and mutational history.
Bons E, Leemann C, Metzner K, Regoes R
PLoS Biol. 2020; 18(12):e3001010.
PMID: 33370289
PMC: 7793244.
DOI: 10.1371/journal.pbio.3001010.
Predominance of positive epistasis among drug resistance-associated mutations in HIV-1 protease.
Zhang T, Dai L, Barton J, Du Y, Tan Y, Pang W
PLoS Genet. 2020; 16(10):e1009009.
PMID: 33085662
PMC: 7605711.
DOI: 10.1371/journal.pgen.1009009.
Effect of synaptic cell-to-cell transmission and recombination on the evolution of double mutants in HIV.
Kreger J, Komarova N, Wodarz D
J R Soc Interface. 2020; 17(164):20190832.
PMID: 32208824
PMC: 7115232.
DOI: 10.1098/rsif.2019.0832.
Recent insights into the genotype-phenotype relationship from massively parallel genetic assays.
Kemble H, Nghe P, Tenaillon O
Evol Appl. 2019; 12(9):1721-1742.
PMID: 31548853
PMC: 6752143.
DOI: 10.1111/eva.12846.
How Often Do Protein Genes Navigate Valleys of Low Fitness?.
Nelson E, Grishin N
Genes (Basel). 2019; 10(4).
PMID: 30965625
PMC: 6523826.
DOI: 10.3390/genes10040283.
Clonal interference can cause wavelet-like oscillations of multilocus linkage disequilibrium.
Garcia V, Glassberg E, Harpak A, Feldman M
J R Soc Interface. 2018; 15(140).
PMID: 29563246
PMC: 5908532.
DOI: 10.1098/rsif.2017.0921.
Inferring genetic interactions from comparative fitness data.
Crona K, Gavryushkin A, Greene D, Beerenwinkel N
Elife. 2017; 6.
PMID: 29260711
PMC: 5737811.
DOI: 10.7554/eLife.28629.
RNA Virus Evolution via a Quasispecies-Based Model Reveals a Drug Target with a High Barrier to Resistance.
Bingham R, Dykeman E, Twarock R
Viruses. 2017; 9(11).
PMID: 29149077
PMC: 5707554.
DOI: 10.3390/v9110347.
Negative Epistasis in Experimental RNA Fitness Landscapes.
Bendixsen D, Ostman B, Hayden E
J Mol Evol. 2017; 85(5-6):159-168.
PMID: 29127445
DOI: 10.1007/s00239-017-9817-5.